Landolt-Börnstein - Group II Molecules and Radicals
Volume 20C1α 2012

Molecular Constants Mostly from Infrared Spectroscopy · Non-linear Triatomic Molecules

Part 1α

Editors: G. Guelachvili
ISBN: 978-3-540-56060-9 (Print) 978-3-540-47383-1 (Online)
DOI: 10.1007/978-3-540-47383-1

Table of contents (164 documents)

  1. Online Document 1

    Non-linear Triatomic Molecules · Introduction

    G. Guelachvili, N. Picqué

  2. Online Document 2

    Non-linear Triatomic Molecules · Survey

    G. Guelachvili, N. Picqué

  3. Online Document 3

    Table 1. H2 16O (H16OH): Calculated spectroscopic constants

    G. Guelachvili, N. Picqué

  4. Online Document 4

    Table 2. H2 16O (H16OH): Vibrational band origins

    G. Guelachvili, N. Picqué

  5. Online Document 5

    Table 3. H2 16O (H16OH): Vibrational band origins

    G. Guelachvili, N. Picqué

  6. Online Document 6

    Table 4. H2 16O (H16OH): Calculated equilibrium geometries, rotational constants, and harmonic frequencies

    G. Guelachvili, N. Picqué

  7. Online Document 7

    Table 5. H2 16O (H16OH): Equilibrium geometries, rotational constants, and harmonic frequencies

    G. Guelachvili, N. Picqué

  8. Online Document 8

    Table 6. H2 16O (H16OH): Quadratic, cubic, and quartic force constants

    G. Guelachvili, N. Picqué

  9. Online Document 9

    Table 7. H2 16O (H16OH): Molecular parameters from analyses up to the second triad

    G. Guelachvili, N. Picqué

  10. Online Document 10

    Table 8. H2 16O (H16OH): Molecular parameters for the (010) state

    G. Guelachvili, N. Picqué

  11. Online Document 11

    Table 9. H2 16O (H16OH): Effective and equilibrium ground state rotational constants

    G. Guelachvili, N. Picqué

  12. Online Document 12

    Table 10. H2 16O (H16OH): Rotational constants for the (010) and the (000) vibrational states

    G. Guelachvili, N. Picqué

  13. Online Document 13

    Table 11. H2 16O (H16OH): Hamiltonian parameters from a fit to 72 vibrational energies

    G. Guelachvili, N. Picqué

  14. Online Document 14

    Table 12. H2 16O (H16OH): Fitted parameters of the effective Hamiltonian of the second triad of interacting (030), (110), and (011) vibrational states

    G. Guelachvili, N. Picqué

  15. Online Document 15

    Table 13. H2 16O (H16OH): Rotational constants for the vibrational state (000)

    G. Guelachvili, N. Picqué

  16. Online Document 16

    Table 14. H2 16O (H16OH): Calculated internal partition function and moments in the 100 K –6000 K temperature domain

    G. Guelachvili, N. Picqué

  17. Online Document 17

    Table 15. H2 16O (H16OH): Molecular constants for the Coudert Bending-Rotation Hamiltonian

    G. Guelachvili, N. Picqué

  18. Online Document 18

    Table 16. H2 16O (H16OH): Fitted parameters of the Tyuterev effective Hamiltonian of the first triad of interacting (020), (100), and (001) vibrational states

    G. Guelachvili, N. Picqué

  19. Online Document 19

    Table 17. H2 16O (H16OH): Fitted parameters of the Tyuterev rotational Hamiltonian of the ground state

    G. Guelachvili, N. Picqué

  20. Online Document 20

    Table 18. H2 16O (H16OH): Molecular parameters for the (000) and the (010) states

    G. Guelachvili, N. Picqué

  21. Online Document 21

    Table 19. H2 16O (H16OH): Rotational parameters for the (031), (130), and (050) vibrational states

    G. Guelachvili, N. Picqué

  22. Online Document 22

    Table 20. H2 16O (H16OH): Rotational parameters for the (111), (210), and (012) vibrational states

    G. Guelachvili, N. Picqué

  23. Online Document 23

    Table 21. H2 16O (H16OH): Molecular constants for the ground state

    G. Guelachvili, N. Picqué

  24. Online Document 24

    Table 22. H2 16O (H16OH): Molecular constants for the ground state

    G. Guelachvili, N. Picqué

  25. Online Document 25

    Table 23. H2 16O (H16OH): Parameters of the effective Padé Hamiltonian operator in the ground state

    G. Guelachvili, N. Picqué

  26. Online Document 26

    Table 24. H2 16O (H16OH): Ground state rotational constants

    G. Guelachvili, N. Picqué

  27. Online Document 27

    Table 25. H2 16O (H16OH): Rotational and distortion constants of the (010) state

    G. Guelachvili, N. Picqué

  28. Online Document 28

    Table 26. H2 16O (H16OH): Harmonic frequencies and anharmonicity constants

    G. Guelachvili, N. Picqué

  29. Online Document 29

    Table 27. H2 16O (H16OH): Rotational constants of the (000) and the (010) vibrational states

    G. Guelachvili, N. Picqué

  30. Online Document 30

    Table 28. H2 16O (H16OH): Rotational and distortion constants

    G. Guelachvili, N. Picqué

  31. Online Document 31

    Table 29. H2 16O (H16OH): Fit coefficients c ijk of the morphing function

    G. Guelachvili, N. Picqué

  32. Online Document 32

    Table 30. H2 16O (H16OH): Barrier to linearity

    G. Guelachvili, N. Picqué

  33. Online Document 33

    Table 31. H2 16O (H16OH): Improved ab initio Potential Energy Surface (PES) from morphing procedure using highly excited energy levels

    G. Guelachvili, N. Picqué

  34. Online Document 34

    Table 32. H2 16O (H16OH): Highly excited vibrational band origins

    G. Guelachvili, N. Picqué

  35. Online Document 35

    Table 33. H2 16O (H16OH): Direct measurement of the dissociation energy

    G. Guelachvili, N. Picqué

  36. Online Document 36

    Table 34. H2 16O (H16OH): Spectroscopically determined Potential Energy Surface (PES)

    G. Guelachvili, N. Picqué

  37. Online Document 37

    Table 35. H2 16O (H16OH): Fit coefficients c ijk of the morphing function

    G. Guelachvili, N. Picqué

  38. Online Document 38

    Table 36. H2 16O (H16OH): Fitted energy levels by vibrational band, and band origins

    G. Guelachvili, N. Picqué

  39. Online Document 39

    Table 37. H2 16O (H16OH): Fitted energy levels by rotational band

    G. Guelachvili, N. Picqué

  40. Online Document 40

    Table 38. H2 16O (H16OH): Equilibrium geometries, harmonic and fundamental frequencies using various potentials

    G. Guelachvili, N. Picqué

  41. Online Document 41

    Table 39. H2 16O (H16OH): Fitted Potential Energy Surface (PES) parameters

    G. Guelachvili, N. Picqué

  42. Online Document 42

    Table 40. H2 16O (H16OH): Fitted Potential Energy Surface (PES) parameters

    G. Guelachvili, N. Picqué

  43. Online Document 43

    Table 41. H2 16O (H16OH): Potential Energy Surface (PES) for various Coupled Cluster/Many-Body Perturbation Theory (CC/MBPT) models

    G. Guelachvili, N. Picqué

  44. Online Document 44

    Table 42. H2 16O (H16OH): Normal coordinate force field parameters

    G. Guelachvili, N. Picqué

  45. Online Document 45

    Table 43. H2 16O (H16OH): Quartic Potential Energy Function (PEF) in internal coordinates

    G. Guelachvili, N. Picqué

  46. Online Document 46

    Table 44. H2 16O (H16OH): Quartic Potential Energy Function (PEF) with expansion parameters ΔR/R used instead of ΔR

    G. Guelachvili, N. Picqué

  47. Online Document 47

    Table 45. H2 16O (H16OH): Force constants of the Potential Energy Function (PEF) CVRQD calculated at its minimum (CVRQD: composite surface including core, valence, relativistic, quantum electrodynamics, and diagonal Born-Oppenheimer (adiabatic) correction surfaces)

    G. Guelachvili, N. Picqué

  48. Online Document 48

    Table 46. H2 16O (H16OH): Force constants provided by the fit using the Hamiltonian of Table 11

    G. Guelachvili, N. Picqué

  49. Online Document 49

    Table 47. H2 16O (H16OH): Force constants for the electronic ground state

    G. Guelachvili, N. Picqué

  50. Online Document 50

    Table 48. H2 16O (H16OH): Force constants for the electronic ground state

    G. Guelachvili, N. Picqué

  51. Online Document 51

    Table 49. H2 16O (H16OH): Normal coordinate force constants derived from the CCSDT − 1 Potential Energy Surface (PES) (CCSD(T): Coupled Cluster with Single and Double and partial Triple excitations)

    G. Guelachvili, N. Picqué

  52. Online Document 52

    Table 50. H2 16O (H16OH): Spectroscopic constants derived from the CCSDT − 1 Potential Energy Surface (PES) (CCSD(T): Coupled Cluster with Single and Double and partial Triple excitations)

    G. Guelachvili, N. Picqué

  53. Online Document 53

    Table 51. H2 16O (H16OH): Ab initio force constants from the bending potential

    G. Guelachvili, N. Picqué

  54. Online Document 54

    Table 52. H2 16O (H16OH): Ab initio dipole moment

    G. Guelachvili, N. Picqué

  55. Online Document 55

    Table 53. H2 16O (H16OH): Vibrationally averaged dipole moments

    G. Guelachvili, N. Picqué

  56. Online Document 56

    Table 54. H2 16O (H16OH): Dipole moment expansion coefficients for the (011)–(000), (110)–(000), and the (030)–(000) bands

    G. Guelachvili, N. Picqué

  57. Online Document 57

    Table 55. H2 16O (H16OH): Dipole moment expansion coefficients for the (011)–(010), (110)–(010), and (030)–(010) bands

    G. Guelachvili, N. Picqué

  58. Online Document 58

    Table 56. H2 16O (H16OH): Dipole moment expansion coefficients for the (021)–(010), (120)–(010) bands

    G. Guelachvili, N. Picqué

  59. Online Document 59

    Table 57. H2 16O (H16OH): High vibrational state dipole moment

    G. Guelachvili, N. Picqué

  60. Online Document 60

    Table 58. H2 16O (H16OH): Dipole moment expansion coefficients for the (010)–(000) band

    G. Guelachvili, N. Picqué

  61. Online Document 61

    Table 59. H2 16O (H16OH): Dipole moment expansion coefficients for the (000)–(000) and the (010)–(010) bands

    G. Guelachvili, N. Picqué

  62. Online Document 62

    Table 60. H2 16O (H16OH): Dipole moment expansion parametersfor the ν 2 band

    G. Guelachvili, N. Picqué

  63. Online Document 63

    Table 61. H2 16O (H16OH): Dipole moment expansion coefficients for the (100)–(000) band

    G. Guelachvili, N. Picqué

  64. Online Document 64

    Table 62. H2 16O (H16OH): Dipole moment expansion coefficients for the (100)–(010), (001)–(010), (001)–(000) bands

    G. Guelachvili, N. Picqué

  65. Online Document 65

    Table 63. H2 16O (H16OH): Dipole moment expansion coefficients for the (020)–(010), (020)–(000) bands

    G. Guelachvili, N. Picqué

  66. Online Document 66

    Table 64. H2 16O (H16OH): Rotation-free dipole moment of the (010) level

    G. Guelachvili, N. Picqué

  67. Online Document 67

    Table 65. H2 16O (H16OH): Temperature dependence of the experimental absorption coefficient in the atmospheric window at 239 GHz

    G. Guelachvili, N. Picqué

  68. Online Document 68

    Table 66. H2 16O (H16OH): Band intensity for 19 vibrational bands

    G. Guelachvili, N. Picqué

  69. Online Document 69

    Table 67. H2 16O (H16OH): Band intensity for 8 vibrational bands

    G. Guelachvili, N. Picqué

  70. Online Document 70

    Table 68. H2 16O (H16OH): Band intensity for ν 1, ν 2, and ν 3 vibrational transitions

    G. Guelachvili, N. Picqué

  71. Online Document 71

    Table 69. H2 16O (H16OH): Band intensity for the (010)–(000), (020)–(000), (100)–(000), (001)–(000), (030)–(000), (110)–(000), and the (011)–(000) vibrational transitions

    G. Guelachvili, N. Picqué

  72. Online Document 72

    Table 70. H2 16O (H16OH): Calculated relative dipole oscillator intensities for 7 vibrational transitions

    G. Guelachvili, N. Picqué

  73. Online Document 73

    Table 71. H2 16O (H16OH): Line width comparison between bands involving the ν 2 vibrational quantum number

    G. Guelachvili, N. Picqué

  74. Online Document 74

    Table 72. H2 16O (H16OH): Band intensity for 15 vibrational bands

    G. Guelachvili, N. Picqué

  75. Online Document 75

    Table 73. H2 16O (H16OH): Band intensity for ν 1, ν 3, and 2ν 2 vibrational transitions

    G. Guelachvili, N. Picqué

  76. Online Document 76

    Table 74. H2 16O (H16OH): Rotational transition frequencies within the vibrational state (010) in the range 0–165 cm−1

    G. Guelachvili, N. Picqué

  77. Online Document 77

    Table 75. H2 16O (H16OH): Line position and intensity for rotational transitions within the vibrational state (010), in the range 0–100 cm−1

    G. Guelachvili, N. Picqué

  78. Online Document 78

    Table 76. H2 16O (H16OH): Calculated wavenumbers, frequencies, line intensities, and lower energy level of rotational transitions within the vibrational state (000), in the range 0.7–828 cm−1

    G. Guelachvili, N. Picqué

  79. Online Document 79

    Table 77. H2 16O (H16OH): Line position and intensity for rotational transitions within the vibrational state (000), in the range 0–100 cm−1

    G. Guelachvili, N. Picqué

  80. Online Document 80

    Table 78. H2 16O (H16OH): Wavenumbers and intensities of rotational transitions within the vibrational state (000), in the range 6.1–1042 cm−1

    G. Guelachvili, N. Picqué

  81. Online Document 81

    Table 79. H2 16O (H16OH): Line position and intensity for rotational transitions (000)–(000) in the range 373–934 cm−1

    G. Guelachvili, N. Picqué

  82. Online Document 82

    Table 80. H2 16O (H16OH): Line position and intensity for rotational transitions (010)–(010) in the range 375–934 cm−1

    G. Guelachvili, N. Picqué

  83. Online Document 83

    Table 81. H2 16O (H16OH): Line position and intensity for rotational transitions (020)–(020) in the range 375–934 cm−1

    G. Guelachvili, N. Picqué

  84. Online Document 84

    Table 82. H2 16O (H16OH): Line position and intensity for rotational transitions (030)–(030) in the range 376–915 cm−1

    G. Guelachvili, N. Picqué

  85. Online Document 85

    Table 83. H2 16O (H16OH): Line position and intensity for rotational transitions (001)–(001) in the range 379–920 cm−1

    G. Guelachvili, N. Picqué

  86. Online Document 86

    Table 84. H2 16O (H16OH): Line position and intensity for rotational transitions (100)–(100) in the range 382–922 cm−1

    G. Guelachvili, N. Picqué

  87. Online Document 87

    Table 85. H2 16O (H16OH): Wavenumbers and intensities of rotational transitions within the vibrational state (001), in the range 385–759 cm−1

    G. Guelachvili, N. Picqué

  88. Online Document 88

    Table 86. H2 16O (H16OH): Line position and intensity for rotational transitions (011)–(011) in the range 385–920 cm−1

    G. Guelachvili, N. Picqué

  89. Online Document 89

    Table 87. H2 16O (H16OH): Wavenumbers and intensities of rotational transitions within the vibrational state (100), in the range 390–764 cm−1

    G. Guelachvili, N. Picqué

  90. Online Document 90

    Table 88. H2 16O (H16OH): Line position and intensity for rotational transitions (110)–(110) in the range 393–894 cm−1

    G. Guelachvili, N. Picqué

  91. Online Document 91

    Table 89. H2 16O (H16OH): Line position and intensity for rotational transitions (120)–(120) in the range 397–705 cm−1

    G. Guelachvili, N. Picqué

  92. Online Document 92

    Table 90. H2 16O (H16OH): Line position and intensity for rotational transitions (101)–(101) in the range 398–585 cm−1

    G. Guelachvili, N. Picqué

  93. Online Document 93

    Table 91. H2 16O (H16OH): Line position and intensity for rotational transitions (040)–(040) in the range 400–917 cm−1

    G. Guelachvili, N. Picqué

  94. Online Document 94

    Table 92. H2 16O (H16OH): Wavenumbers and intensities of rotational transitions within the vibrational state (020), in the range 402–784 cm−1

    G. Guelachvili, N. Picqué

  95. Online Document 95

    Table 93. H2 16O (H16OH): Line position and intensity for rotational transitions (050)–(050) in the range 406–853 cm−1

    G. Guelachvili, N. Picqué

  96. Online Document 96

    Table 94. H2 16O (H16OH): Wavenumbers and intensities of rotational transitions within the vibrational state (000), in the range 407–921 cm−1

    G. Guelachvili, N. Picqué

  97. Online Document 97

    Table 95. H2 16O (H16OH): Line position and intensity for rotational transitions (021)–(021) in the range 409–749 cm−1

    G. Guelachvili, N. Picqué

  98. Online Document 98

    Table 96. H2 16O (H16OH): Line position and intensity for rotational transitions (031)–(031) in the range 412–754 cm−1

    G. Guelachvili, N. Picqué

  99. Online Document 99

    Table 97. H2 16O (H16OH): Line parameters for rovibrational transitions (020)–(020) in the range 415–1113 cm−1

    G. Guelachvili, N. Picqué

  100. Online Document 100

    Table 98. H2 16O (H16OH): Line position and intensity for rotational transitions (060)–(060) in the range 420–607 cm−1

    G. Guelachvili, N. Picqué

  101. Online Document 101

    Table 99. H2 16O (H16OH): Pure rotational and rotational difference band lines involving K a = 10 levels heavily mixed for the (020) and (100) vibrational states in the range 427–711 cm−1

    G. Guelachvili, N. Picqué

  102. Online Document 102

    Table 100. H2 16O (H16OH): Rotational difference band lines involving isolated interactions, in the range 428–717 cm−1

    G. Guelachvili, N. Picqué

  103. Online Document 103

    Table 101. H2 16O (H16OH): Wavenumbers and intensities of rotational transitions within the vibrational state (010), in the range 435–910 cm−1

    G. Guelachvili, N. Picqué

  104. Online Document 104

    Table 102. H2 16O (H16OH): Wavenumbers and intensities of rotational transitions within the vibrational levels (001), (020), and (100) in the range 449–874 cm−1

    G. Guelachvili, N. Picqué

  105. Online Document 105

    Table 103. H2 16O (H16OH): Wavenumbers and intensities of rotational transitions within the vibrational level (000), in the range 449–874 cm−1

    G. Guelachvili, N. Picqué

  106. Online Document 106

    Table 104. H2 16O (H16OH): Wavenumbers and intensities of rotational transitions within the vibrational level (010), in the range 496–865 cm−1

    G. Guelachvili, N. Picqué

  107. Online Document 107

    Table 105. H2 16O (H16OH): Line position and intensity for rotational transitions (200)–(200) in the range 502–547 cm−1

    G. Guelachvili, N. Picqué

  108. Online Document 108

    Table 106. H2 16O (H16OH): Line position and intensity for rotational transitions (111)–(111) in the range 506–648 cm−1

    G. Guelachvili, N. Picqué

  109. Online Document 109

    Table 107. H2 16O (H16OH): Line position and intensity for one rotational transitions (002)–(002) at 539 cm−1

    G. Guelachvili, N. Picqué

  110. Online Document 110

    Table 108. H2 16O (H16OH): Line position and intensity for the rotational transitions (000)–(000) in the range 539–1810 cm−1

    G. Guelachvili, N. Picqué

  111. Online Document 111

    Table 109. H2 16O (H16OH): Line position and intensity for the rotational transitions (010)–(010) in the range 565–1962 cm−1

    G. Guelachvili, N. Picqué

  112. Online Document 112

    Table 110. H2 16O (H16OH): Line position and intensity for the rotational transitions (100)–(100) in the range 566–1472 cm−1

    G. Guelachvili, N. Picqué

  113. Online Document 113

    Table 111. H2 16O (H16OH): Line position and intensity for rotational transitions (001)–(001) in the range 570–1447 cm−1

    G. Guelachvili, N. Picqué

  114. Online Document 114

    Table 112. H2 16O (H16OH): Line position and intensity for the rotational transitions (020)–(020) in the range 572–1910 cm−1

    G. Guelachvili, N. Picqué

  115. Online Document 115

    Table 113. H2 16O (H16OH): Line position and intensity for rotational transitions (011)–(011) in the range 580–1835 cm−1

    G. Guelachvili, N. Picqué

  116. Online Document 116

    Table 114. H2 16O (H16OH): Line position and intensity for rotational transitions (030)–(030) in the range 581–1827 cm−1

    G. Guelachvili, N. Picqué

  117. Online Document 117

    Table 115. H2 16O (H16OH): Line position and intensity for rotational transitions (110)–(110) in the range 590–1277 cm−1

    G. Guelachvili, N. Picqué

  118. Online Document 118

    Table 116. H2 16O (H16OH): Experimental wavenumbers and intensities of rotational transitions within the vibrational state (010), in the range 590–851 cm−1

    G. Guelachvili, N. Picqué

  119. Online Document 119

    Table 117. H2 16O (H16OH): Line position and intensity for rotational transitions (040)–(040) in the range 598–1363 cm−1

    G. Guelachvili, N. Picqué

  120. Online Document 120

    Table 118. H2 16O (H16OH): Wavenumbers, intensities, and self-broadening coefficients of rotational transitions within the vibrational state (000), in the range 600–639 cm−1

    G. Guelachvili, N. Picqué

  121. Online Document 121

    Table 119. H2 16O (H16OH): Line parameters for rotational transitions within the vibrational state (000), in the range 610–1111 cm−1

    G. Guelachvili, N. Picqué

  122. Online Document 122

    Table 120. H2 16O (H16OH): Line position and intensity for rotational transitions (021)–(021) in the range 613–1189 cm−1

    G. Guelachvili, N. Picqué

  123. Online Document 123

    Table 121. H2 16O (H16OH): Line position and intensity for rotational transitions (101)–(101) in the range 681–926 cm−1

    G. Guelachvili, N. Picqué

  124. Online Document 124

    Table 122. H2 16O (H16OH): Line position and intensity for rotational transitions (100)–(100) in the range 722–995 cm−1

    G. Guelachvili, N. Picqué

  125. Online Document 125

    Table 123. H2 16O (H16OH): Line position and intensity for rotational transitions (000)–(000) in the range 723–1011 cm−1

    G. Guelachvili, N. Picqué

  126. Online Document 126

    Table 124. H2 16O (H16OH): Line position and intensity for rotational transitions (010)–(010) in the range 722–1011 cm−1

    G. Guelachvili, N. Picqué

  127. Online Document 127

    Table 125. H2 16O (H16OH): Line position and intensity for rotational transitions (000)–(000) in the range 723–1011 cm−1

    G. Guelachvili, N. Picqué

  128. Online Document 128

    Table 126. H2 16O (H16OH): Line position and intensity for rotational transitions (011)–(011) in the range 724–1005 cm−1

    G. Guelachvili, N. Picqué

  129. Online Document 129

    Table 127. H2 16O (H16OH): Line position and intensity for rotational transitions (001)–(001) in the range 725–1008 cm−1

    G. Guelachvili, N. Picqué

  130. Online Document 130

    Table 128. H2 16O (H16OH): Line position and intensity for rotational transitions (020)–(020) in the range 726–1007 cm−1

    G. Guelachvili, N. Picqué

  131. Online Document 131

    Table 129. H2 16O (H16OH): Line position and intensity for rotational transitions (021)–(021) in the range 726–992 cm−1

    G. Guelachvili, N. Picqué

  132. Online Document 132

    Table 130. H2 16O (H16OH): Line position and intensity for rotational transitions (030)–(030) in the range 727–1007 cm−1

    G. Guelachvili, N. Picqué

  133. Online Document 133

    Table 131. H2 16O (H16OH): Line position and intensity for rotational transitions (110)–(110) in the range 727–997 cm−1

    G. Guelachvili, N. Picqué

  134. Online Document 134

    Table 132. H2 16O (H16OH): Line position and intensity for rotational transitions (030)–(020) in the range 734–1003 cm−1

    G. Guelachvili, N. Picqué

  135. Online Document 135

    Table 133. H2 16O (H16OH): Line position and intensity for rotational transitions (031)–(031) in the range 742–979 cm−1

    G. Guelachvili, N. Picqué

  136. Online Document 136

    Table 134. H2 16O (H16OH): Line position and intensity for rovibrational transitions belonging to the (040)–(030) vibrational band, in the range 598–1363 cm−1

    G. Guelachvili, N. Picqué

  137. Online Document 137

    Table 135. H2 16O (H16OH): Line position and intensity for rotational transitions (040)–(040) in the range 747–1007 cm−1

    G. Guelachvili, N. Picqué

  138. Online Document 138

    Table 136. H2 16O (H16OH): Line position and intensity for rotational transitions (120)–(120) in the range 750–901 cm−1

    G. Guelachvili, N. Picqué

  139. Online Document 139

    Table 137. H2 16O (H16OH): Line position and intensity for rotational transitions (060)–(060) in the range 757–934 cm−1

    G. Guelachvili, N. Picqué

  140. Online Document 140

    Table 138. H2 16O (H16OH): Line position and intensity for rotational transitions (040)–(030) in the range 757–993 cm−1

    G. Guelachvili, N. Picqué

  141. Online Document 141

    Table 139. H2 16O (H16OH): Line position and intensity for rovibrational transitions belonging to the (030)–(020) vibrational band, in the range 757–1981 cm−1

    G. Guelachvili, N. Picqué

  142. Online Document 142

    Table 140. H2 16O (H16OH): Line position and intensity for rovibrational transitions (100)–(010) in the range 763–1006 cm−1

    G. Guelachvili, N. Picqué

  143. Online Document 143

    Table 141. H2 16O (H16OH): Line position and intensity for rotational transitions (111)–(111) in the range 769–875 cm−1

    G. Guelachvili, N. Picqué

  144. Online Document 144

    Table 142. H2 16O (H16OH): Line position and intensity for rotational transitions (002)–(002) in the range 779–971 cm−1

    G. Guelachvili, N. Picqué

  145. Online Document 145

    Table 143. H2 16O (H16OH): Line position and intensity for rotational transitions (200)–(200) in the range 780–873 cm−1

    G. Guelachvili, N. Picqué

  146. Online Document 146

    Table 144. H2 16O (H16OH): Line position and intensity for rotational transitions (101)–(101) in the range 784–974 cm−1

    G. Guelachvili, N. Picqué

  147. Online Document 147

    Table 145. H2 16O (H16OH): Line position and intensity for rotational transitions (041)–(041) in the range 785–990 cm−1

    G. Guelachvili, N. Picqué

  148. Online Document 148

    Table 146. H2 16O (H16OH): Line position and intensity for rovibrational transitions belonging to the (020)–(010) vibrational band, in the range 786–1992 cm−1

    G. Guelachvili, N. Picqué

  149. Online Document 149

    Table 147. H2 16O (H16OH): Line position and intensity for rovibrational transitions (110)–(100) in the range 802–1005 cm−1

    G. Guelachvili, N. Picqué

  150. Online Document 150

    Table 148. H2 16O (H16OH): Line parameters for rotational transitions within the (000) vibrational level, in the range 802–1043 cm−1

    G. Guelachvili, N. Picqué

  151. Online Document 151

    Table 149. H2 16O (H16OH): Wavenumbers and intensities for rotational transitions within the vibrational level (000), in the range 802–1088 cm−1

    G. Guelachvili, N. Picqué

  152. Online Document 152

    Table 150. H2 16O (H16OH): Line position and intensity for rotational transitions (050)–(050) in the range 808–974 cm−1

    G. Guelachvili, N. Picqué

  153. Online Document 153

    Table 151. H2 16O (H16OH): Line position and intensity for rotational transitions (012)–(012) in the range 742–979 cm−1

    G. Guelachvili, N. Picqué

  154. Online Document 154

    Table 152. H2 16O (H16OH): Line position and intensity for rotational transitions (051)–(051) in the range 830–996 cm−1

    G. Guelachvili, N. Picqué

  155. Online Document 155

    Table 153. H2 16O (H16OH): Line position and intensity for rovibrational transitions (011)–(001) in the range 844–1002 cm−1

    G. Guelachvili, N. Picqué

  156. Online Document 156

    Table 154. H2 16O (H16OH): Line position and intensity for the rotational transitions (050)–(050) in the range 853–1073 cm−1

    G. Guelachvili, N. Picqué

  157. Online Document 157

    Table 155. H2 16O (H16OH): Collisional half-widths of rovibrational transitions belonging the (010)–(000) band

    G. Guelachvili, N. Picqué

  158. Online Document 158

    Table 156. H2 16O (H16OH): Line position and intensity for rotational transitions (002)–(002) in the range 863–1880 cm−1

    G. Guelachvili, N. Picqué

  159. Online Document 159

    Table 157. H2 16O (H16OH): Line position and intensity for rotational transitions (031)–(031) in the range 886–1012 cm−1

    G. Guelachvili, N. Picqué

  160. Online Document 160

    Table 158. H2 16O (H16OH): Wavenumbers and intensities for rovibrational transitions belonging to the (010)–(000) vibrational band, in the range 896–1251 cm−1

    G. Guelachvili, N. Picqué

  161. Online Document 161

    Table 159. H2 16O (H16OH): Line parameters for rovibrational transitions belonging to the (010)–(000) vibrational band, in the range 896–1150 cm−1

    G. Guelachvili, N. Picqué

  162. Online Document 162

    Table 160. H2 16O (H16OH): Wavenumbers and intensities for rovibrational transitions belonging to the (010)–(000) vibrational band, in the range 998–2583 cm−1

    G. Guelachvili, N. Picqué

  163. Online Document 163

    Table 161. H2 16O (H16OH): Wavenumbers, intensities, and self-broadening coefficients of rotational transitions within the vibrational state (000), in the range 922–1064 cm−1

    G. Guelachvili, N. Picqué

  164. Online Document 164

    Table 162. H2 16O (H16OH): Line position and intensity for rotational transitions within the (010) vibrational state in the range 934–2111 cm−1

    G. Guelachvili, N. Picqué