Landolt-Börnstein - Group III Condensed Matter
Volume 44C 2010

Semiconductors · New Data and Updates for III-V, II-VI and I-VII Compounds

Editors: U. Rössler
ISBN: 978-3-540-92139-4 (Print) 978-3-540-92140-0 (Online)
DOI: 10.1007/978-3-540-92140-0

Table of contents (367 documents)

  1. Online Document 1

    AgBr: heat capacity

    B. Hönerlage

  2. Online Document 2

    AgBr: thermal conductivity, thermal diffusivity

    B. Hönerlage

  3. Online Document 3

    AgBr: heat of sublimation

    B. Hönerlage

  4. Online Document 4

    AgBr: effective masses

    B. Hönerlage

  5. Online Document 5

    AgBr: lattice constants

    B. Hönerlage

  6. Online Document 6

    AgBr: lattice constants

    B. Hönerlage

  7. Online Document 7

    AgBr: mean square relative displacements

    B. Hönerlage

  8. Online Document 8

    AgBr: bulk moduli, elastic constants

    B. Hönerlage

  9. Online Document 9

    AgBr: compressibility, bulk modulus

    B. Hönerlage

  10. Online Document 10

    AgBr: phonon dispersion

    B. Hönerlage

  11. Online Document 11

    AgBr: Debye-Waller factor

    B. Hönerlage

  12. Online Document 12

    AgBr: elastic moduli

    B. Hönerlage

  13. Online Document 13

    AgBr: dielectric function

    B. Hönerlage

  14. Online Document 14

    AgIxBr1–x: electrical conductivity, thermoelectric power

    B. Hönerlage

  15. Online Document 15

    AgCl: heat capacity

    B. Hönerlage

  16. Online Document 16

    AgCl: heat of sublimation

    B. Hönerlage

  17. Online Document 17

    AgCl: thermal conductivity, thermal diffusivity

    B. Hönerlage

  18. Online Document 18

    AgCl: band structure, electron density of states

    B. Hönerlage

  19. Online Document 19

    AgCl: effective masses

    B. Hönerlage

  20. Online Document 20

    AgCl: energy gaps, density of states

    B. Hönerlage

  21. Online Document 21

    AgCl: lattice constants

    B. Hönerlage

  22. Online Document 22

    AgCl: lattice constants

    B. Hönerlage

  23. Online Document 23

    AgCl: phonon dispersion

    B. Hönerlage

  24. Online Document 24

    AgCl: bulk moduli, elastic constants

    B. Hönerlage

  25. Online Document 25

    AgCl: compressibility, bulk modulus

    B. Hönerlage

  26. Online Document 26

    AgCl: elastic moduli

    B. Hönerlage

  27. Online Document 27

    AgCl: Debye-Waller factor

    B. Hönerlage

  28. Online Document 28

    AgCl: dielectric function

    B. Hönerlage

  29. Online Document 29

    AgCl: impurity g-factors, hyperfine structure constants

    B. Hönerlage

  30. Online Document 30

    AgF: lattice constants

    B. Hönerlage

  31. Online Document 31

    AgF: heat of sublimation

    B. Hönerlage

  32. Online Document 32

    α-AgI: bulk moduli

    B. Hönerlage

  33. Online Document 33

    α-AgI: lattice constants

    B. Hönerlage

  34. Online Document 34

    β-AgI: mean square relative displacements

    B. Hönerlage

  35. Online Document 35

    AgI: phase transitions, p-T phase diagram

    B. Hönerlage

  36. Online Document 36

    AgI: heat of sublimation

    B. Hönerlage

  37. Online Document 37

    AgI: lattice constants

    B. Hönerlage

  38. Online Document 38

    AgI: compressibility, bulk modulus

    B. Hönerlage

  39. Online Document 39

    AgI: phonon dispersion

    B. Hönerlage

  40. Online Document 40

    AgI: Debye-Waller factor

    B. Hönerlage

  41. Online Document 41

    AgI: elastic moduli, mode Grüneisen parameters

    B. Hönerlage

  42. Online Document 42

    α-AgI: ion diffusion coefficient

    B. Hönerlage

  43. Online Document 43

    AlAs: dielectric constant, refractive index

    E. C. Fernandes da Silva

  44. Online Document 44

    AlAs: direct and indirect energy gaps

    E. C. Fernandes da Silva

  45. Online Document 45

    AlAs: effective mass parameters

    E. C. Fernandes da Silva

  46. Online Document 46

    AlAs: electron density of states, energies at symmetry points

    E. C. Fernandes da Silva

  47. Online Document 47

    AlAs: energy gaps

    E. C. Fernandes da Silva

  48. Online Document 48

    AlGaxAs1–x: heat capacity

    E. C. Fernandes da Silva

  49. Online Document 49

    AlGaxAs1–x: linear thermal expansion coefficient

    E. C. Fernandes da Silva

  50. Online Document 50

    AlGaxAs1–x: thermal conductivity, thermal diffusivity

    E. C. Fernandes da Silva

  51. Online Document 51

    AlxGa1–xAs: crossover composition energy at symmetry points

    E. C. Fernandes da Silva

  52. Online Document 52

    AlxGa1–xAs: electron self energy, electron broadening parameter

    E. C. Fernandes da Silva

  53. Online Document 53

    AlxGa1–xAs: lattice constant

    E. C. Fernandes da Silva

  54. Online Document 54

    AlxGa1–xAs: elastic constants, Poisson ratio

    E. C. Fernandes da Silva

  55. Online Document 55

    AlxGa1–xAs: refractive index, dielectric constant

    E. C. Fernandes da Silva

  56. Online Document 56

    AlxGayIn1–x–yAs: bond length

    E. C. Fernandes da Silva

  57. Online Document 57

    AlxGayIn1–x–yAs: energy gap

    E. C. Fernandes da Silva

  58. Online Document 58

    AlxGayIn1–x–yAs: Raman spectra

    E. C. Fernandes da Silva

  59. Online Document 59

    AlxGayIn1–x–yAs: hole mobility

    E. C. Fernandes da Silva

  60. Online Document 60

    AlxGayIn1–x–yAs: photoluminescence linewidth

    E. C. Fernandes da Silva

  61. Online Document 61

    AlxGa1–xAsySb1–y: internal strain parameter

    E. C. Fernandes da Silva

  62. Online Document 62

    AlxGa1–xAsySb1–y: thermal conductivity

    E. C. Fernandes da Silva

  63. Online Document 63

    AlxGa1–xAsySb1–y: band structure

    E. C. Fernandes da Silva

  64. Online Document 64

    AlxGa1–xAsySb1–y: effective mass parameters

    E. C. Fernandes da Silva

  65. Online Document 65

    AlxGa1–xAsySb1–y: energy gaps

    E. C. Fernandes da Silva

  66. Online Document 66

    AlxGa1–xAsySb1–y: elastic moduli

    E. C. Fernandes da Silva

  67. Online Document 67

    AlxGa1–xAsySb1–y: dielectric constant

    E. C. Fernandes da Silva

  68. Online Document 68

    AlxGa1–xAsySb1–y: photoluminescence, absorption coefficient

    E. C. Fernandes da Silva

  69. Online Document 69

    AlxIn1–xAs: critical point energies

    E. C. Fernandes da Silva

  70. Online Document 70

    AlxIn1–xAs: Raman data

    E. C. Fernandes da Silva

  71. Online Document 71

    Al1–xMnxAs: crystal structure, lattice parameter

    F. Matsukura

  72. Online Document 72

    Al1–xMnxAs: resistance

    F. Matsukura

  73. Online Document 73

    Al1–xMnxAs: magnetic phases

    F. Matsukura

  74. Online Document 74

    AlAsxSb1–x: thermal conductivity

    E. C. Fernandes da Silva

  75. Online Document 75

    AlxGayIn1–x–yP: bond length

    E. C. Fernandes da Silva

  76. Online Document 76

    AlxGa1–xP: lattice parameters

    E. C. Fernandes da Silva

  77. Online Document 77

    AlxGa1–xP: critical point energies, interband transition energies

    E. C. Fernandes da Silva

  78. Online Document 78

    AlxGa1–xP: electron self energy

    E. C. Fernandes da Silva

  79. Online Document 79

    AlxGa1–xP: exciton energies

    E. C. Fernandes da Silva

  80. Online Document 80

    AlxGa1–xP: bound exciton data

    E. C. Fernandes da Silva

  81. Online Document 81

    AlxGa1–xP: photoluminescence spectra

    E. C. Fernandes da Silva

  82. Online Document 82

    AlxGa1–xPySb1–y: elastic moduli

    E. C. Fernandes da Silva

  83. Online Document 83

    AlxGa1–xPySb1–y: internal strain parameter

    E. C. Fernandes da Silva

  84. Online Document 84

    AlxIn1–xPySb1–y: internal strain parameter

    E. C. Fernandes da Silva

  85. Online Document 85

    AlxIn1–xPySb1–y: elastic moduli

    E. C. Fernandes da Silva

  86. Online Document 86

    BxGa1–xAs: energy gaps, energy at symmetry points

    E. C. Fernandes da Silva

  87. Online Document 87

    BxGa1–xAs: lattice parameter

    E. C. Fernandes da Silva

  88. Online Document 88

    BxGa1–x–yInyAs: critical point energies

    E. C. Fernandes da Silva

  89. Online Document 89

    BxGa1–x–yInyAs: electron effective mass

    E. C. Fernandes da Silva

  90. Online Document 90

    BxGa1–x–yInyAs: energy gaps

    E. C. Fernandes da Silva

  91. Online Document 91

    GaAs1–xBix: direct energy gap, intraband transition energies

    E. C. Fernandes da Silva

  92. Online Document 92

    GaAs1–xBix: energy gaps, critical point energies

    E. C. Fernandes da Silva

  93. Online Document 93

    GaAs1–xBix: spin orbit splitting energy

    E. C. Fernandes da Silva

  94. Online Document 94

    GaAs1–xBix: spin orbit splitting energy

    E. C. Fernandes da Silva

  95. Online Document 95

    BxIn1–xAs: lattice parameter

    E. C. Fernandes da Silva

  96. Online Document 96

    Ga1–xCrxAs: crystal structure, lattice parameter

    F. Matsukura

  97. Online Document 97

    Ga1–xCrxAs: conductivity, carrier concentration

    F. Matsukura

  98. Online Document 98

    Ga1–xCrxAs: Curie temperature, magnetic circular dichroism

    F. Matsukura

  99. Online Document 99

    Ga1–xFexAs: crystal structure, lattice parameter

    F. Matsukura

  100. Online Document 100

    Ga1–xFexAs: conductivity, magnetoresistance

    F. Matsukura

  101. Online Document 101

    Ga1–xFexAs: magnetization

    F. Matsukura

  102. Online Document 102

    GaAs: heat capacity

    E. C. Fernandes da Silva

  103. Online Document 103

    GaAs: spin-Hall conductivity, transversal spin drift velocity

    E. C. Fernandes da Silva

  104. Online Document 104

    GaAs: phonon density of states

    E. C. Fernandes da Silva

  105. Online Document 105

    GaAs: Debye temperatures

    E. C. Fernandes da Silva

  106. Online Document 106

    GaAs: spin transport data, spin lifetime, spin drift velocity

    E. C. Fernandes da Silva

  107. Online Document 107

    GaAs: photoemission data

    E. C. Fernandes da Silva

  108. Online Document 108

    GaAs: radiative recombination coefficient

    E. C. Fernandes da Silva

  109. Online Document 109

    GaxIn1–xAs: effective Landé g factors

    E. C. Fernandes da Silva

  110. Online Document 110

    GaxIn1–xAs: electron effective mass

    E. C. Fernandes da Silva

  111. Online Document 111

    GaxIn1–xAs: energy gaps

    E. C. Fernandes da Silva

  112. Online Document 112

    GaxIn1–xAs: parameters of k·p models

    E. C. Fernandes da Silva

  113. Online Document 113

    GaxIn1–xAs: critical point energies

    E. C. Fernandes da Silva

  114. Online Document 114

    GaxIn1–xAs: phonon wave numbers

    E. C. Fernandes da Silva

  115. Online Document 115

    GaxIn1–xAs: carrier lifetime

    E. C. Fernandes da Silva

  116. Online Document 116

    GaxIn1–xAs: spin transport data

    E. C. Fernandes da Silva

  117. Online Document 117

    GaxIn1–xAs: impact ionization rate

    E. C. Fernandes da Silva

  118. Online Document 118

    GaxIn1–xAs: dielectric function

    E. C. Fernandes da Silva

  119. Online Document 119

    GaxIn1–xAs: Auger recombination coefficient and lifetime

    E. C. Fernandes da Silva

  120. Online Document 120

    GaxIn1–xAs: radiative recombination coefficients

    E. C. Fernandes da Silva

  121. Online Document 121

    GaxIn1–xAsyP1–y: energy gaps

    E. C. Fernandes da Silva

  122. Online Document 122

    GaxIn1–xAsyP1–y: energy gaps

    E. C. Fernandes da Silva

  123. Online Document 123

    GaxIn1–xAsyP1–y: Auger recombination coefficient

    E. C. Fernandes da Silva

  124. Online Document 124

    GaxIn1–xAsyP1–y: radiative recombination coefficients

    E. C. Fernandes da Silva

  125. Online Document 125

    GaxIn1–xPySbzAs1–y–z: band structure, density of states

    E. C. Fernandes da Silva

  126. Online Document 126

    GaxIn1–xPySbzAs1–y–z: energy gaps

    E. C. Fernandes da Silva

  127. Online Document 127

    GaxIn1–xPySbzAs1–y–z: transverse effective charge, dielectric constants

    E. C. Fernandes da Silva

  128. Online Document 128

    GaxIn1–xAsySb1–y: lattice constant

    E. C. Fernandes da Silva

  129. Online Document 129

    GaxIn1–xAsySb1–y: thermal conductivity

    E. C. Fernandes da Silva

  130. Online Document 130

    GaxIn1–xAsySb1–y: critical point energies

    E. C. Fernandes da Silva

  131. Online Document 131

    GaxIn1–xAsySb1–y: energy gaps

    E. C. Fernandes da Silva

  132. Online Document 132

    GaxIn1–xAsySb1–y: energy gap

    E. C. Fernandes da Silva

  133. Online Document 133

    GaxIn1–xAsySb1–y: absorption coefficient

    E. C. Fernandes da Silva

  134. Online Document 134

    GaxIn1–xAsySb1–y: absorption coefficient

    E. C. Fernandes da Silva

  135. Online Document 135

    GaxIn1–xAsySb1–y: Auger recombination coefficient, nonradiative lifetime

    E. C. Fernandes da Silva

  136. Online Document 136

    GaxIn1–xAsySb1–y: dielectric constant

    E. C. Fernandes da Silva

  137. Online Document 137

    GaxIn1–xAsySb1–y: dielectric constant

    E. C. Fernandes da Silva

  138. Online Document 138

    GaxIn1–xAsySb1–y: refractive index

    E. C. Fernandes da Silva

  139. Online Document 139

    Ga1–xMnxAs: crystal structure, lattice parameter

    F. Matsukura

  140. Online Document 140

    Ga1–xMnxAs: band structure, direct energy gap

    F. Matsukura

  141. Online Document 141

    Ga1–xMnxAs: spin polarization

    F. Matsukura

  142. Online Document 142

    Ga1–xMnxAs: conductivity, resistivity, magnetoresistance, Hall effect

    F. Matsukura

  143. Online Document 143

    Ga1–xMnxAs: exchange integrals, Curie temperature, magnetic anisotropy

    F. Matsukura

  144. Online Document 144

    Ga1–xMnxAs: magnetic circular dichroism, Verdet constant

    F. Matsukura

  145. Online Document 145

    GaAs1–xSbx: direct energy gap, spin orbit splitting energy

    E. C. Fernandes da Silva

  146. Online Document 146

    GaAsxSb1–x: energy gaps

    E. C. Fernandes da Silva

  147. Online Document 147

    GaAsxSb1–x: photoluminescence

    E. C. Fernandes da Silva

  148. Online Document 148

    GaAsxSb1–x: refractive index

    E. C. Fernandes da Silva

  149. Online Document 149

    InAs: total energies, phase diagram

    E. C. Fernandes da Silva

  150. Online Document 150

    InAs: band structure

    E. C. Fernandes da Silva

  151. Online Document 151

    InAs: critical point energies

    E. C. Fernandes da Silva

  152. Online Document 152

    InAs: Dresselhaus spin splitting parameter

    E. C. Fernandes da Silva

  153. Online Document 153

    InAs: spin orbit splitting energies

    E. C. Fernandes da Silva

  154. Online Document 154

    InAs: effective mass parameters

    E. C. Fernandes da Silva

  155. Online Document 155

    InAs: energies at symmetry points

    E. C. Fernandes da Silva

  156. Online Document 156

    InAs: effective Landé g factors

    E. C. Fernandes da Silva

  157. Online Document 157

    InAs: interband transition energies

    E. C. Fernandes da Silva

  158. Online Document 158

    New Data and Updates for III-V, II-VI and I-VII Compounds · InAs: energy gap

    E. C. Fernandes da Silva

  159. Online Document 159

    InAs: phonon frequencies

    E. C. Fernandes da Silva

  160. Online Document 160

    New Data and Updates for III-V, II-VI and I-VII Compounds · InAs: mobility

    E. C. Fernandes da Silva

  161. Online Document 161

    InAs: electron spin lifetime

    E. C. Fernandes da Silva

  162. Online Document 162

    InAs: drift velocity

    E. C. Fernandes da Silva

  163. Online Document 163

    InAs: dielectric constant

    E. C. Fernandes da Silva

  164. Online Document 164

    InAs: absorption coefficient, reflectivity

    E. C. Fernandes da Silva

  165. Online Document 165

    InAs: extinction coefficient, refractive index

    E. C. Fernandes da Silva

  166. Online Document 166

    InAs: higher order optical susceptibilities

    E. C. Fernandes da Silva

  167. Online Document 167

    In1–xMnxAs: crystal structure, lattice parameter

    F. Matsukura

  168. Online Document 168

    In1–xMnxAs: direct gap, effective masses

    F. Matsukura

  169. Online Document 169

    In1–xMnxAs: conductivity, magnetoresistance, Hall resistivity

    F. Matsukura

  170. Online Document 170

    In1–xMnxAs: carrier concentration, mobility

    F. Matsukura

  171. Online Document 171

    In1–xMnxAs: magnetic circular dichroism

    F. Matsukura

  172. Online Document 172

    In1–xMnxAs: magnetic phases, exchange integrals, Curie temperature, magnetic anisotropy-->In1–xMnxAs: magnetic phases, exchange integrals, Curie temperature, magnetic anisotropy

    F. Matsukura

  173. Online Document 173

    InAsxSb1–x: critical point energies, broadening parameters

    E. C. Fernandes da Silva

  174. Online Document 174

    InAsxSb1–x: energy gaps

    E. C. Fernandes da Silva

  175. Online Document 175

    InxAs1–xSb: transverse effective charge

    E. C. Fernandes da Silva

  176. Online Document 176

    InAsxSb1–x: sound velocities

    E. C. Fernandes da Silva

  177. Online Document 177

    InAsxSb1–x: elastic moduli

    E. C. Fernandes da Silva

  178. Online Document 178

    InAsxSb1–x: dielectric constant

    E. C. Fernandes da Silva

  179. Online Document 179

    InBixSb1–x: transverse effective charge

    E. C. Fernandes da Silva

  180. Online Document 180

    CuCl1–xBrx: phonon wavenumbers

    B. Hönerlage

  181. Online Document 181

    CuCl1–xBrx: electron mobility, drift velocity

    B. Hönerlage

  182. Online Document 182

    CuBr: p-T phase diagram, transition pressure

    B. Hönerlage

  183. Online Document 183

    CuBr: interionic distance

    B. Hönerlage

  184. Online Document 184

    CuBr: heat of sublimation

    B. Hönerlage

  185. Online Document 185

    γ-CuBr: biexciton and trion data

    B. Hönerlage

  186. Online Document 186

    γ-CuBr: deformation potentials

    B. Hönerlage

  187. Online Document 187

    γ-CuBr: energy gaps, exciton energies in dependence on temperature

    B. Hönerlage

  188. Online Document 188

    CuBr: elastic moduli, effective charges

    B. Hönerlage

  189. Online Document 189

    CuBr: Grüneisen parameters

    B. Hönerlage

  190. Online Document 190

    CuBr: phonon wavenumbers, damping constants, Grüneisen parameters

    B. Hönerlage

  191. Online Document 191

    CuBr: phonon dispersion curves, phonon density of states

    B. Hönerlage

  192. Online Document 192

    CuBr: lattice constants

    B. Hönerlage

  193. Online Document 193

    γ-CuBr: mean square relative displacements

    B. Hönerlage

  194. Online Document 194

    CuBr: bulk modulus

    B. Hönerlage

  195. Online Document 195

    γ-CuBr: ion transport properties

    B. Hönerlage

  196. Online Document 196

    γ-CuBr: electron mobility, drift velocity

    B. Hönerlage

  197. Online Document 197

    γ-CuBr: dielectric constants

    B. Hönerlage

  198. Online Document 198

    Hg1–x–y–zCdxMnyZnzTe: energy gap

    J. Chu

  199. Online Document 199

    Hg1–x–y–zCdxMnyZnzTe: micro hardness

    J. Chu

  200. Online Document 200

    Hg1–x–y–zCdxMnyZnzTe: intrinsic carrier concentration, conductivity, Hall coefficient, mobility

    J. Chu

  201. Online Document 201

    Hg1–x–y–zCdxMnyZnzTe: activation energy

    J. Chu

  202. Online Document 202

    Hg1–xCdxTe: activation energy

    J. Chu

  203. Online Document 203

    Hg1–xCdxTe: mobility, carrier concentration

    J. Chu

  204. Online Document 204

    Hg1-xCdxTe: free-carrier absorption

    J. Chu

  205. Online Document 205

    Hg1–xCdxTe: luminescence, reflectance, absorption, and refractive index

    J. Chu

  206. Online Document 206

    Hg1-xCdxTe: reflectance

    J. Chu

  207. Online Document 207

    Hg1-xCdxTe: two-photon absorption constant

    J. Chu

  208. Online Document 208

    CdO: band structure, density of states

    J. Gutowski, K. Sebald, T. Voss

  209. Online Document 209

    New Data and Updates for III-V, II-VI and I-VII Compounds · CdO: energy gaps

    J. Gutowski, K. Sebald, T. Voss

  210. Online Document 210

    CdO: mean inner potential

    J. Gutowski, K. Sebald, T. Voss

  211. Online Document 211

    CdO: photoconductivity, resistivity

    J. Gutowski, K. Sebald, T. Voss

  212. Online Document 212

    Zn1–xCdxO: energy gaps, dependence on temperature

    J. Gutowski, K. Sebald, T. Voss

  213. Online Document 213

    Zn1–xCdxO: resistivity

    J. Gutowski, K. Sebald, T. Voss

  214. Online Document 214

    CdS: phase transition, transition pressure

    J. Gutowski, K. Sebald, T. Voss

  215. Online Document 215

    CdS: exciton energies, exciton binding energies

    J. Gutowski, K. Sebald, T. Voss

  216. Online Document 216

    CdS: bound excitons

    J. Gutowski, K. Sebald, T. Voss

  217. Online Document 217

    CdS: defect formation energies

    J. Gutowski, K. Sebald, T. Voss

  218. Online Document 218

    New Data and Updates for III-V, II-VI and I-VII Compounds · CdS: resistivity

    J. Gutowski, K. Sebald, T. Voss

  219. Online Document 219

    CdS: conductivity, mobility

    J. Gutowski, K. Sebald, T. Voss

  220. Online Document 220

    CdSe: phase transition, transition pressure

    J. Gutowski, K. Sebald, T. Voss

  221. Online Document 221

    CdSe: energy gaps

    J. Gutowski, K. Sebald, T. Voss

  222. Online Document 222

    CdSe: dielectric constants

    J. Gutowski, K. Sebald, T. Voss

  223. Online Document 223

    CdSe: higher order optical susceptibilities

    J. Gutowski, K. Sebald, T. Voss

  224. Online Document 224

    Sn1–xCdxTe: hardness

    J. Gutowski, K. Sebald, T. Voss

  225. Online Document 225

    ZnxCd1–xS: energy gaps

    J. Gutowski, K. Sebald, T. Voss

  226. Online Document 226

    Cd1–xZnxS: resistivity

    J. Gutowski, K. Sebald, T. Voss

  227. Online Document 227

    CdTe: density of states

    J. Gutowski, K. Sebald, T. Voss

  228. Online Document 228

    CdTe: energy gaps, temperature dependence

    J. Gutowski, K. Sebald, T. Voss

  229. Online Document 229

    CdTe: band structure

    J. Gutowski, K. Sebald, T. Voss

  230. Online Document 230

    CdTe: impurity complexes

    J. Gutowski, K. Sebald, T. Voss

  231. Online Document 231

    CdTe: impurity complexes

    J. Gutowski, K. Sebald, T. Voss

  232. Online Document 232

    CdTe: ionization energies

    J. Gutowski, K. Sebald, T. Voss

  233. Online Document 233

    CdTe: ionization energies

    J. Gutowski, K. Sebald, T. Voss

  234. Online Document 234

    CdTe: bound excitons

    J. Gutowski, K. Sebald, T. Voss

  235. Online Document 235

    CdTe: donor-acceptor pairs, free-to-bound transitions

    J. Gutowski, K. Sebald, T. Voss

  236. Online Document 236

    CdTe: emission energies

    J. Gutowski, K. Sebald, T. Voss

  237. Online Document 237

    CdTe: bound excitons

    J. Gutowski, K. Sebald, T. Voss

  238. Online Document 238

    CdTe: Hall mobility

    J. Gutowski, K. Sebald, T. Voss

  239. Online Document 239

    New Data and Updates for III-V, II-VI and I-VII Compounds · CdTe: mobility

    J. Gutowski, K. Sebald, T. Voss

  240. Online Document 240

    CdTe: resistivity

    J. Gutowski, K. Sebald, T. Voss

  241. Online Document 241

    CdTe: conductivity, resistivity

    J. Gutowski, K. Sebald, T. Voss

  242. Online Document 242

    CdTe: dielectric constants

    J. Gutowski, K. Sebald, T. Voss

  243. Online Document 243

    CdTe: higher order optical susceptibilities

    J. Gutowski, K. Sebald, T. Voss

  244. Online Document 244

    Cd1–xZnxTe: enthalpy

    J. Gutowski, K. Sebald, T. Voss

  245. Online Document 245

    Cd1–xZnxTe: energy gaps

    J. Gutowski, K. Sebald, T. Voss

  246. Online Document 246

    Cd1–xZnxTe: donor acceptor pairs

    J. Gutowski, K. Sebald, T. Voss

  247. Online Document 247

    Cd1–xZnxTe: ionization energies

    J. Gutowski, K. Sebald, T. Voss

  248. Online Document 248

    Cd1–xZnxTe: resistivity, mobilities, Hall coefficient

    J. Gutowski, K. Sebald, T. Voss

  249. Online Document 249

    γ-CuCl: exciton energies

    B. Hönerlage

  250. Online Document 250

    γ-CuCl: phonon wavenumbers

    B. Hönerlage

  251. Online Document 251

    CuCl: mean square relative displacements

    B. Hönerlage

  252. Online Document 252

    CuCl: phonon dispersion

    B. Hönerlage

  253. Online Document 253

    CuCl: elastic moduli

    B. Hönerlage

  254. Online Document 254

    SiC: valence band offsets

    R. P. Devaty

  255. Online Document 255

    SiC: spontaneous polarization

    R. P. Devaty

  256. Online Document 256

    SiC: absorption coefficient

    R. P. Devaty

  257. Online Document 257

    SiC: Auger recombination coefficient

    R. P. Devaty

  258. Online Document 258

    New Data and Updates for III-V, II-VI and I-VII Compounds · SiC: exciton gap

    R. P. Devaty

  259. Online Document 259

    α-SiC: nonlinear optical coefficients

    R. P. Devaty

  260. Online Document 260

    SiC: refractive index

    R. P. Devaty

  261. Online Document 261

    CuF: heat of sublimation

    B. Hönerlage

  262. Online Document 262

    CuF: lattice constants

    B. Hönerlage

  263. Online Document 263

    CuI: phase transitions, p-T phase diagram

    B. Hönerlage

  264. Online Document 264

    CuI: heat of sublimation

    B. Hönerlage

  265. Online Document 265

    γ-CuI: biexciton and trion data

    B. Hönerlage

  266. Online Document 266

    γ-CuI: exciton energies

    B. Hönerlage

  267. Online Document 267

    CuI: force constants, elastic moduli, effective charges

    B. Hönerlage

  268. Online Document 268

    CuI: bulk modulus

    B. Hönerlage

  269. Online Document 269

    CuI: phonon dispersion

    B. Hönerlage

  270. Online Document 270

    γ-CuI: phonon wavenumbers

    B. Hönerlage

  271. Online Document 271

    CuI: lattice parameters

    B. Hönerlage

  272. Online Document 272

    CuI: mode Grüneisen parameters

    B. Hönerlage

  273. Online Document 273

    γ-CuI: mean square displacement

    B. Hönerlage

  274. Online Document 274

    CuI: ion diffusion coefficient

    B. Hönerlage

  275. Online Document 275

    γ-CuI: electron mobility, drift velocity

    B. Hönerlage

  276. Online Document 276

    GaxIn1–xP: elastic moduli

    E. C. Fernandes da Silva

  277. Online Document 277

    GaxIn1–xP: transverse effective charge

    E. C. Fernandes da Silva

  278. Online Document 278

    Ga1–xMnxSb: crystal structure

    F. Matsukura

  279. Online Document 279

    Ga1–xMnxSb: conductivity, magnetoresistance, Hall resistivity

    F. Matsukura

  280. Online Document 280

    Ga1–xMnxSb: Curie temperature, magnetic anisotropy

    F. Matsukura

  281. Online Document 281

    GaP: phonon density of states

    E. C. Fernandes da Silva

  282. Online Document 282

    Hg1–xMnxTe: energy gaps, effective masses

    J. Chu

  283. Online Document 283

    Hg1–xMnxTe: ionization energies

    J. Chu

  284. Online Document 284

    Hg1–xMnxTe: mobility, conductivity and Hall coefficient

    J. Chu

  285. Online Document 285

    Hg1–xMnxTe: absorption, reflectivity

    J. Chu

  286. Online Document 286

    HgS: point/space groups

    J. Chu

  287. Online Document 287

    HgS: band structure, energy gaps

    J. Chu

  288. Online Document 288

    New Data and Updates for III-V, II-VI and I-VII Compounds · HgS: energy gaps

    J. Chu

  289. Online Document 289

    HgS: conductivity

    J. Chu

  290. Online Document 290

    New Data and Updates for III-V, II-VI and I-VII Compounds · HgS: resistivity

    J. Chu

  291. Online Document 291

    HgSe: band structure, electron density of states

    J. Chu

  292. Online Document 292

    HgSe: transmittance

    J. Chu

  293. Online Document 293

    HgTe: lattice parameters

    J. Chu

  294. Online Document 294

    HgTe: point/space groups

    J. Chu

  295. Online Document 295

    HgTe: band structure, density of states

    J. Chu

  296. Online Document 296

    HgTe: conductivity, Hall coefficient

    J. Chu

  297. Online Document 297

    HgTe: resisitivity, carrier mobility

    J. Chu

  298. Online Document 298

    HgTe: Seebeck coefficient

    J. Chu

  299. Online Document 299

    Hg1-xZnxTe: phonon frequencies

    J. Chu

  300. Online Document 300

    Hg1-xZnxTe: reflectance

    J. Chu

  301. Online Document 301

    In1–xMnxSb: crystal structure, lattice parameter

    F. Matsukura

  302. Online Document 302

    In1–xMnxSb: spin polarization

    F. Matsukura

  303. Online Document 303

    In1–xMnxSb: conductivity, Hall resistivity

    F. Matsukura

  304. Online Document 304

    In1–xMnxSb: magnetic phases, Curie temperature, magnetic anisotropy

    F. Matsukura

  305. Online Document 305

    InPxSb1–x: energy gaps

    E. C. Fernandes da Silva

  306. Online Document 306

    InPxSb1–x: effective charges

    E. C. Fernandes da Silva

  307. Online Document 307

    InPxSb1–x: phonon frequencies

    E. C. Fernandes da Silva

  308. Online Document 308

    InPxSb1–x: dielectric constant

    E. C. Fernandes da Silva

  309. Online Document 309

    InSb: interband transition energies

    E. C. Fernandes da Silva

  310. Online Document 310

    InSb: spin orbit splittings

    E. C. Fernandes da Silva

  311. Online Document 311

    InSb: Dresselhaus spin splitting parameter

    E. C. Fernandes da Silva

  312. Online Document 312

    InSb: effective Landé g factors

    E. C. Fernandes da Silva

  313. Online Document 313

    InSb: effective mass parameters

    E. C. Fernandes da Silva

  314. Online Document 314

    InSb: energies at symmetry points

    E. C. Fernandes da Silva

  315. Online Document 315

    InSb: band structure

    E. C. Fernandes da Silva

  316. Online Document 316

    InSb: critical point energies

    E. C. Fernandes da Silva

  317. Online Document 317

    InSb: spin transport data

    E. C. Fernandes da Silva

  318. Online Document 318

    InSb: absorption coefficient, reflectivity

    E. C. Fernandes da Silva

  319. Online Document 319

    InSb: Auger lifetime

    E. C. Fernandes da Silva

  320. Online Document 320

    InSb: dielectric constant

    E. C. Fernandes da Silva

  321. Online Document 321

    InSb: extinction coefficient, refractive index

    E. C. Fernandes da Silva

  322. Online Document 322

    InSb: higher order optical susceptibilities

    E. C. Fernandes da Silva

  323. Online Document 323

    MgyZn1–yTe1–xSex: energy gaps

    J. Gutowski, K. Sebald, T. Voss

  324. Online Document 324

    Zn1-xMgxTe: energy gaps, bowing parameter

    J. Gutowski, K. Sebald, T. Voss

  325. Online Document 325

    Zn1–xMgxSe: absorption

    J. Gutowski, K. Sebald, T. Voss

  326. Online Document 326

    ZnSe1–xOx: exciton energies, exciton binding energies

    J. Gutowski, K. Sebald, T. Voss

  327. Online Document 327

    ZnSxO1-x: energy gaps, bowing parameter

    J. Gutowski, K. Sebald, T. Voss

  328. Online Document 328

    ZnO: mean inner potential

    J. Gutowski, K. Sebald, T. Voss

  329. Online Document 329

    ZnO: dielectric constants

    J. Gutowski, K. Sebald, T. Voss

  330. Online Document 330

    ZnSe: phase transition, transition pressure

    J. Gutowski, K. Sebald, T. Voss

  331. Online Document 331

    ZnSe: spin-orbit splitting

    J. Gutowski, K. Sebald, T. Voss

  332. Online Document 332

    ZnSe: deformation potentials

    J. Gutowski, K. Sebald, T. Voss

  333. Online Document 333

    ZnSe: Compton profiles

    J. Gutowski, K. Sebald, T. Voss

  334. Online Document 334

    ZnSe: Compton scattering profiles

    J. Gutowski, K. Sebald, T. Voss

  335. Online Document 335

    ZnSe: bound exciton data

    J. Gutowski, K. Sebald, T. Voss

  336. Online Document 336

    ZnSe: bound excitons and electrons

    J. Gutowski, K. Sebald, T. Voss

  337. Online Document 337

    ZnSe: bound excitons

    J. Gutowski, K. Sebald, T. Voss

  338. Online Document 338

    ZnSe: deep impurities

    J. Gutowski, K. Sebald, T. Voss

  339. Online Document 339

    ZnSe: deep impurities, muonium data

    J. Gutowski, K. Sebald, T. Voss

  340. Online Document 340

    ZnSe: diffusion coefficient

    J. Gutowski, K. Sebald, T. Voss

  341. Online Document 341

    ZnSe: donor acceptor pairs

    J. Gutowski, K. Sebald, T. Voss

  342. Online Document 342

    ZnSe: donor-acceptor pairs, free-to-bound transitions

    J. Gutowski, K. Sebald, T. Voss

  343. Online Document 343

    ZnSe: ionization and excitation energies

    J. Gutowski, K. Sebald, T. Voss

  344. Online Document 344

    ZnSe: ionization and excitation energies

    J. Gutowski, K. Sebald, T. Voss

  345. Online Document 345

    ZnSe: Hall mobility

    J. Gutowski, K. Sebald, T. Voss

  346. Online Document 346

    ZnSe: conductivity

    J. Gutowski, K. Sebald, T. Voss

  347. Online Document 347

    ZnSe: dielectric constants

    J. Gutowski, K. Sebald, T. Voss

  348. Online Document 348

    ZnSxSe1-x: energy gaps, bowing parameter

    J. Gutowski, K. Sebald, T. Voss

  349. Online Document 349

    ZnSxSe1-x: refractive index, dielectric constants

    J. Gutowski, K. Sebald, T. Voss

  350. Online Document 350

    ZnS1-xTex: bound excitons

    J. Gutowski, K. Sebald, T. Voss

  351. Online Document 351

    ZnS: phase transition, transition pressure

    J. Gutowski, K. Sebald, T. Voss

  352. Online Document 352

    ZnS: spin-orbit splitting

    J. Gutowski, K. Sebald, T. Voss

  353. Online Document 353

    ZnS: deep impurities, muonium data

    J. Gutowski, K. Sebald, T. Voss

  354. Online Document 354

    ZnS: ionization energies

    J. Gutowski, K. Sebald, T. Voss

  355. Online Document 355

    New Data and Updates for III-V, II-VI and I-VII Compounds · ZnS: resistivity

    J. Gutowski, K. Sebald, T. Voss

  356. Online Document 356

    ZnS: dielectric constants

    J. Gutowski, K. Sebald, T. Voss

  357. Online Document 357

    ZnS: dielectric constants

    J. Gutowski, K. Sebald, T. Voss

  358. Online Document 358

    ZnS: dielectric constants

    J. Gutowski, K. Sebald, T. Voss

  359. Online Document 359

    ZnTe: spin-orbit splitting

    J. Gutowski, K. Sebald, T. Voss

  360. Online Document 360

    ZnTe: bound excitons

    J. Gutowski, K. Sebald, T. Voss

  361. Online Document 361

    ZnTe: donor-acceptor-pairs

    J. Gutowski, K. Sebald, T. Voss

  362. Online Document 362

    ZnTe: ionization energies

    J. Gutowski, K. Sebald, T. Voss

  363. Online Document 363

    ZnTe: ionization energies

    J. Gutowski, K. Sebald, T. Voss

  364. Online Document 364

    ZnTe: diffusion coefficient

    J. Gutowski, K. Sebald, T. Voss

  365. Online Document 365

    ZnTe: resistivity

    J. Gutowski, K. Sebald, T. Voss

  366. Online Document 366

    ZnTe: thermoelectric power

    J. Gutowski, K. Sebald, T. Voss

  367. Online Document 367

    ZnTe: refractive index, dielectric constants

    J. Gutowski, K. Sebald, T. Voss