Condensed Matter
Volume 45B 2018

Physics of Solid Surfaces · Physics of Solid Surfaces

Subvolume B

Editors: G. Chiarotti, P. Chiaradia
ISBN: 978-3-662-53906-4 (Print) 978-3-662-53908-8 (Online)
DOI: 10.1007/978-3-662-53908-8

Table of contents (233 documents)

  1. Online Document 1

    General introduction

    G. Chiarotti, P. Chiaradia

  2. Online Document 2

    Introduction to basic principles of surface structure theoretical simulation

    A. Shkrebtii, M. Rohlfing

  3. Online Document 3

    Physics mechanisms of the surface structure formation

    A. Shkrebtii, M. Rohlfing

  4. Online Document 4

    Compilation of the theoretical frameworks for surface structure simulations

    A. Shkrebtii, M. Rohlfing

  5. Online Document 5

    Determination of the total energy of a many-particle system

    A. Shkrebtii, M. Rohlfing

  6. Online Document 6

    Basic numerical approaches for surface structure simulation

    A. Shkrebtii, M. Rohlfing

  7. Online Document 7

    Comparing theoretically simulated and experimentally determined surface structures

    A. Shkrebtii, M. Rohlfing

  8. Online Document 8

    Application to prototypical homopolar semiconductor clean surfaces

    A. Shkrebtii, M. Rohlfing

  9. Online Document 9

    Application to prototypical heteropolar semiconductor clean surfaces

    A. Shkrebtii, M. Rohlfing

  10. Online Document 10

    Application to prototypical metal clean surfaces: the Au(110) 1 × 2 missing-row structure

    A. Shkrebtii, M. Rohlfing

  11. Online Document 11

    Application to prototypical metal-oxide clean surfaces: the complex TiO2 (110) surface reconstruction

    A. Shkrebtii, M. Rohlfing

  12. Online Document 12

    Conclusions about theoretical foundations and simulation of surface structures

    A. Shkrebtii, M. Rohlfing

  13. Online Document 13

    Introduction to surface reconstruction and relaxation

    A. Shkrebtii, F. Filippone, A. Fasolino

  14. Online Document 14

    Clean surfaces of semiconductors: introductory remarks

    A. Shkrebtii, F. Filippone, A. Fasolino

  15. Online Document 15

    Homopolar cubic semiconductors: clean diamond surfaces C(100), C(110), and C(111)

    A. Shkrebtii, F. Filippone, A. Fasolino

  16. Online Document 16

    Homopolar cubic semiconductors: clean silicon surfaces Si(100), Si(110), and Si(111)

    A. Shkrebtii, F. Filippone, A. Fasolino

  17. Online Document 17

    Homopolar cubic semiconductors: clean germanium surfaces Ge(100), Ge(110), and Ge(111)

    A. Shkrebtii, F. Filippone, A. Fasolino

  18. Online Document 18

    Heteropolar cubic semiconductors: low-index surfaces of zinc blend compound semiconductors

    A. Shkrebtii, F. Filippone, A. Fasolino

  19. Online Document 19

    Heteropolar Wurtzite type semiconductors

    A. Shkrebtii, F. Filippone, A. Fasolino

  20. Online Document 20

    Clean surfaces of oxides: introductory remarks

    A. Shkrebtii, F. Filippone, A. Fasolino

  21. Online Document 21

    Clean surfaces of titanium dioxide TiO2 and other rutile structures

    A. Shkrebtii, F. Filippone, A. Fasolino

  22. Online Document 22

    Clean surfaces of zinc oxide and other Wurtzite type structures

    A. Shkrebtii, F. Filippone, A. Fasolino

  23. Online Document 23

    Clean surfaces of rock salt oxides

    A. Shkrebtii, F. Filippone, A. Fasolino

  24. Online Document 24

    Clean surfaces of perovskites

    A. Shkrebtii, F. Filippone, A. Fasolino

  25. Online Document 25

    Clean surfaces of corundum oxides and similar

    A. Shkrebtii, F. Filippone, A. Fasolino

  26. Online Document 26

    Clean surfaces of calcite-form oxides

    A. Shkrebtii, F. Filippone, A. Fasolino

  27. Online Document 27

    Clean surfaces of metals: introductory remarks

    A. Shkrebtii, F. Filippone, A. Fasolino

  28. Online Document 28

    Relaxation of the clean surfaces of metals

    A. Shkrebtii, F. Filippone, A. Fasolino

  29. Online Document 29

    Reconstruction at the clean surfaces of metals

    A. Shkrebtii, F. Filippone, A. Fasolino

  30. Online Document 30

    Introduction to structural defects at surfaces

    J. Wollschläger

  31. Online Document 31

    Structure of domain boundaries: metals: Au

    J. Wollschläger

  32. Online Document 32

    Structure of domain boundaries: metals: Fe

    J. Wollschläger

  33. Online Document 33

    Structure of domain boundaries: metals: Ga

    J. Wollschläger

  34. Online Document 34

    Structure of domain boundaries: metals: Ir

    J. Wollschläger

  35. Online Document 35

    Structure of domain boundaries: metals: Pt

    J. Wollschläger

  36. Online Document 36

    Structure of domain boundaries: metals: W

    J. Wollschläger

  37. Online Document 37

    Structure of domain boundaries: group IV elements and IV–IV compounds: diamond

    J. Wollschläger

  38. Online Document 38

    Structure of domain boundaries: group IV elements and IV–IV compounds: Si

    J. Wollschläger

  39. Online Document 39

    Structure of domain boundaries: group IV elements and IV–IV compounds: Ge

    J. Wollschläger

  40. Online Document 40

    Structure of domain boundaries: group IV elements and IV–IV compounds: SiC

    J. Wollschläger

  41. Online Document 41

    Structure of domain boundaries: group III–V compounds: GaAs

    J. Wollschläger

  42. Online Document 42

    Structure of domain boundaries: other III–V compounds: GaP, GaSb, InAs, InP, InSb

    J. Wollschläger

  43. Online Document 43

    Structure of domain boundaries: II–VI compounds: CdTe, HgTe

    J. Wollschläger

  44. Online Document 44

    Structure of domain boundaries: binary oxides: Al2O3

    J. Wollschläger

  45. Online Document 45

    Structure of domain boundaries: binary oxides: Al2O3 films

    J. Wollschläger

  46. Online Document 46

    Structure of domain boundaries: binary oxides: Fe3O4

    J. Wollschläger

  47. Online Document 47

    Structure of domain boundaries: binary oxides: Fe3O4 films on MgO(001)

    J. Wollschläger

  48. Online Document 48

    Structure of domain boundaries: binary oxides: TiO2 (anatase)

    J. Wollschläger

  49. Online Document 49

    Structure of domain boundaries: binary oxides: TiO2 (rutile)

    J. Wollschläger

  50. Online Document 50

    Structure of domain boundaries: other binary oxides: SiO2, SnO2, and WO3

    J. Wollschläger

  51. Online Document 51

    Structure of domain boundaries: ternary oxides: titanates (BaTiO3, SrTiO3)

    J. Wollschläger

  52. Online Document 52

    Decoration of domain boundaries: metals: Au (decoration by metals)

    J. Wollschläger

  53. Online Document 53

    Decoration of domain boundaries: metals: Au (decoration by molecules)

    J. Wollschläger

  54. Online Document 54

    Decoration of domain boundaries – group IV elements and IV–IV compounds – Si (001)

    J. Wollschläger

  55. Online Document 55

    Decoration of domain boundaries: group IV elements and IV–IV compounds: Si (111) (decoration by elemental metals and semiconductors)

    J. Wollschläger

  56. Online Document 56

    Decoration of domain boundaries: group IV elements and IV–IV compounds: Si(111) (decoration by compounds)

    J. Wollschläger

  57. Online Document 57

    Decoration of domain boundaries: group IV elements and IV–IV compounds: Si(111) (decoration by molecules)

    J. Wollschläger

  58. Online Document 58

    Decoration of domain boundaries: group IV elements and IV–IV compounds: other Si surfaces

    J. Wollschläger

  59. Online Document 59

    Decoration of domain boundaries: group IV elements and IV–IV compounds: Ge

    J. Wollschläger

  60. Online Document 60

    Decoration of domain boundaries: group IV elements and IV–IV compounds: SiC

    J. Wollschläger

  61. Online Document 61

    Decoration of domain boundaries: group III–V compounds: InSb

    J. Wollschläger

  62. Online Document 62

    Decoration of domain boundaries: binary oxides: Al2O3

    J. Wollschläger

  63. Online Document 63

    Decoration of domain boundaries: binary oxides: Al2O3 films

    J. Wollschläger

  64. Online Document 64

    Decoration of domain boundaries: binary oxides: Fe3O4

    J. Wollschläger

  65. Online Document 65

    Decoration of domain boundaries: binary oxides: TiO2

    J. Wollschläger

  66. Online Document 66

    Decoration of domain boundaries: ternary oxides: SrTiO3

    J. Wollschläger

  67. Online Document 67

    Coexistence of domains: metals: Au

    J. Wollschläger

  68. Online Document 68

    Coexistence of domains: metals: other metals (Ir, Pt, W)

    J. Wollschläger

  69. Online Document 69

    Coexistence of domains: group IV elements and IV–IV compounds: diamond

    J. Wollschläger

  70. Online Document 70

    Coexistence of domains: group IV elements and IV–IV compounds: Si

    J. Wollschläger

  71. Online Document 71

    Coexistence of domains: group IV elements and IV–IV compounds: Ge

    J. Wollschläger

  72. Online Document 72

    Coexistence of domains: group III–V compounds: GaAs

    J. Wollschläger

  73. Online Document 73

    Coexistence of domains: other III–V compounds and II–VI compounds (AlSb, GaP, GaSb, InAs, InP, InSb, CdTe)

    J. Wollschläger

  74. Online Document 74

    Coexistence of domains: binary oxides: Al2O3

    J. Wollschläger

  75. Online Document 75

    Coexistence of domains: binary oxides: TiO2

    J. Wollschläger

  76. Online Document 76

    Coexistence of domains: other binary oxides (Ce7O11, Fe3O4, Fe3O4/MgO, SnO2, WO3)

    J. Wollschläger

  77. Online Document 77

    Coexistence of domains: ternary oxides: BaTiO3

    J. Wollschläger

  78. Online Document 78

    Coexistence of domains: ternary oxides: SrTiO3

    J. Wollschläger

  79. Online Document 79

    Phase transition: metals: Au

    J. Wollschläger

  80. Online Document 80

    Phase transition: metals: Ga

    J. Wollschläger

  81. Online Document 81

    Phase transition: metals: Ir

    J. Wollschläger

  82. Online Document 82

    Phase transition: metals: Mo

    J. Wollschläger

  83. Online Document 83

    Phase transition: metals: Pt

    J. Wollschläger

  84. Online Document 84

    Phase transition: metals: W

    J. Wollschläger

  85. Online Document 85

    Phase transition: group IV elements and IV–IV compounds: diamond

    J. Wollschläger

  86. Online Document 86

    Phase transition: group IV elements and IV–IV compounds: Si

    J. Wollschläger

  87. Online Document 87

    Phase transition: group IV elements and IV–IV compounds: Ge

    J. Wollschläger

  88. Online Document 88

    Phase transition: group IV elements and IV–IV compounds: SiC

    J. Wollschläger

  89. Online Document 89

    Historical remarks and introduction to photoemission

    P. D. Johnson

  90. Online Document 90

    The photoemission process

    P. D. Johnson

  91. Online Document 91

    Inverse photoemission

    P. D. Johnson

  92. Online Document 92

    Spin-polarized photoemission

    P. D. Johnson

  93. Online Document 93

    Two-photon photoemission

    P. D. Johnson

  94. Online Document 94

    Core-level excitation and related resonant phenomena

    P. D. Johnson

  95. Online Document 95

    Escape depth of the photoelectrons

    P. D. Johnson

  96. Online Document 96

    Electronic structure in the surface region: bulk and surface states

    P. D. Johnson

  97. Online Document 97

    Electronic structure in the surface region: Shockley surface states and image states

    P. D. Johnson

  98. Online Document 98

    Electronic structure in the surface region: the Rashba effect and surface states

    P. D. Johnson

  99. Online Document 99

    Electronic structure in the surface region: quantum well states

    P. D. Johnson

  100. Online Document 100

    Electronic structure in the surface region: electron-boson coupling in metallic systems

    P. D. Johnson

  101. Online Document 101

    The common crystal structures

    P. D. Johnson

  102. Online Document 102

    Electronic structure studies of Be (beryllium)

    P. D. Johnson

  103. Online Document 103

    Electronic structure studies of C (carbon)

    P. D. Johnson

  104. Online Document 104

    Electronic structure studies of Mg (magnesium)

    P. D. Johnson

  105. Online Document 105

    Electronic structure studies of Si (silicon)

    P. D. Johnson

  106. Online Document 106

    Electronic structure studies of V (vanadium)

    P. D. Johnson

  107. Online Document 107

    Electronic structure studies of Cr (chromium)

    P. D. Johnson

  108. Online Document 108

    Electronic structure studies of Fe (iron)

    P. D. Johnson

  109. Online Document 109

    Electronic structure studies of Ni (nickel)

    P. D. Johnson

  110. Online Document 110

    Electronic structure studies of Cu (copper)

    P. D. Johnson

  111. Online Document 111

    Electronic structure studies of Ga (gallium) and related compounds: the case of GaN

    P. D. Johnson

  112. Online Document 112

    Electronic structure studies of Ge (germanium)

    P. D. Johnson

  113. Online Document 113

    Electronic structure studies of Nb (niobium)

    P. D. Johnson

  114. Online Document 114

    Electronic structure studies of Mo (molybdenum)

    P. D. Johnson

  115. Online Document 115

    Electronic structure studies of Pd (palladium)

    P. D. Johnson

  116. Online Document 116

    Electronic structure studies of Ag (silver)

    P. D. Johnson

  117. Online Document 117

    Electronic structure studies of W (tungsten)

    P. D. Johnson

  118. Online Document 118

    Electronic structure studies of Ir (iridium)

    P. D. Johnson

  119. Online Document 119

    Electronic structure studies of Pt (platinum)

    P. D. Johnson

  120. Online Document 120

    Electronic structure studies of Au (gold)

    P. D. Johnson

  121. Online Document 121

    Electronic structure studies of Pb (lead)

    P. D. Johnson

  122. Online Document 122

    Electronic structure studies of Bi (bismuth)

    P. D. Johnson

  123. Online Document 123

    Electronic structure studies of Ce (cerium)

    P. D. Johnson

  124. Online Document 124

    Electronic structure studies of Gd (gadolinium)

    P. D. Johnson

  125. Online Document 125

    Strongly correlated systems: high-Tc superconductors: cuprates

    P. D. Johnson

  126. Online Document 126

    (strongly correlated systems): high Tc superconductors: Fe-based

    P. D. Johnson

  127. Online Document 127

    Dirac cones and topological states: topological insulators

    P. D. Johnson

  128. Online Document 128

    Dirac cones and topological states: Dirac and Weyl semimetals

    P. D. Johnson

  129. Online Document 129

    Introduction to Raman scattering at surfaces

    N. Esser, E. Speiser

  130. Online Document 130

    Fundamentals of surface Raman spectroscopy

    N. Esser, E. Speiser

  131. Online Document 131

    Raman selection rules and surface Raman tensor

    N. Esser, E. Speiser

  132. Online Document 132

    Surface resonance

    N. Esser, E. Speiser

  133. Online Document 133

    Historical remarks on surface Raman scattering

    N. Esser, E. Speiser

  134. Online Document 134

    Physics of Solid Surfaces · Clean InP(110)

    N. Esser, E. Speiser

  135. Online Document 135

    Physics of Solid Surfaces · Clean Ge(001)

    N. Esser, E. Speiser

  136. Online Document 136

    Physics of Solid Surfaces · Clean Si(111)

    N. Esser, E. Speiser

  137. Online Document 137

    Sb monolayer-terminated III–V(110) surfaces

    N. Esser, E. Speiser

  138. Online Document 138

    Sb-terminated Si(001) and Ge(001)

    N. Esser, E. Speiser

  139. Online Document 139

    As-terminated Si(111)

    N. Esser, E. Speiser

  140. Online Document 140

    In-terminated Si(111)

    N. Esser, E. Speiser

  141. Online Document 141

    Au-terminated Si(111)

    N. Esser, E. Speiser

  142. Online Document 142

    Au-terminated Si(553)

    N. Esser, E. Speiser

  143. Online Document 143

    Metal surfaces: Si nanoribbons on Ag(110)

    N. Esser, E. Speiser

  144. Online Document 144

    Introduction to field electron and ion emission and customary units

    R. G. Forbes

  145. Online Document 145

    Basic terminology of Fowler-Nordheim electron transmission theory

    R. G. Forbes

  146. Online Document 146

    Transmission probability for an exactly triangular barrier

    R. G. Forbes

  147. Online Document 147

    Transmission probability for a general rounded barrier

    R. G. Forbes

  148. Online Document 148

    The Schottky effect and related parameters

    R. G. Forbes

  149. Online Document 149

    Transmission probability for a Schottky-Nordheim barrier

    R. G. Forbes

  150. Online Document 150

    Local emission current density regimes

    R. G. Forbes

  151. Online Document 151

    Local emission current densities for a Schottky-Nordheim barrier

    R. G. Forbes

  152. Online Document 152

    Energy distributions for the Schottky-Nordheim barrier

    R. G. Forbes

  153. Online Document 153

    Basic auxiliary relationships

    R. G. Forbes

  154. Online Document 154

    Field electron emission measurement circuit theory

    R. G. Forbes

  155. Online Document 155

    Basic theory of Fowler-Nordheim plots

    R. G. Forbes

  156. Online Document 156

    Testing for lack of field emission orthodoxy

    R. G. Forbes

  157. Online Document 157

    Theoretical introduction to field evaporation

    R. G. Forbes

  158. Online Document 158

    The prediction of zero-barrier evaporation field

    R. G. Forbes

  159. Online Document 159

    Post-field ionization

    R. G. Forbes

  160. Online Document 160

    The “changeover field” in thermal-field shaping

    R. G. Forbes

  161. Online Document 161

    The position of the electrical surface

    R. G. Forbes

  162. Online Document 162

    Physical properties of the noble operating gases

    R. G. Forbes

  163. Online Document 163

    Field calibration issues

    R. G. Forbes

  164. Online Document 164

    Introduction to epigraphene and overview

    C. Berger, E. H. Conrad, W. A. de Heer

  165. Online Document 165

    The electronic band structure of graphene

    C. Berger, E. H. Conrad, W. A. de Heer

  166. Online Document 166

    Silicon carbide and epitaxial graphene on silicon carbide

    C. Berger, E. H. Conrad, W. A. de Heer

  167. Online Document 167

    Structure and band structure of epitaxial graphene on hexagonal silicon carbide

    C. Berger, E. H. Conrad, W. A. de Heer

  168. Online Document 168

    Electronic transport properties of epigraphene

    C. Berger, E. H. Conrad, W. A. Heer

  169. Online Document 169

    Transport properties of epigraphene in magnetic field

    C. Berger, E. H. Conrad, W. A. de Heer

  170. Online Document 170

    Towards electronic devices based on epigraphene

    C. Berger, E. H. Conrad, W. A. de Heer

  171. Online Document 171

    Optical and plasmonic properties of epigraphene

    C. Berger, E. H. Conrad, W. A. de Heer

  172. Online Document 172

    Introduction to fullerenes on surfaces

    C. Cepek, A. Goldoni

  173. Online Document 173

    Band dispersion of solid C60

    C. Cepek, A. Goldoni

  174. Online Document 174

    Fullerenes on metals and semiconductors: interaction with the substrate

    C. Cepek, A. Goldoni

  175. Online Document 175

    Ordered fullerenes on metal surfaces: monatomic steps on vicinal surfaces and reconstruction on metals

    C. Cepek, A. Goldoni

  176. Online Document 176

    C60 monolayer on semiconductors

    C. Cepek, A. Goldoni

  177. Online Document 177

    Directing fullerene adsorption via supramolecular templates

    C. Cepek, A. Goldoni

  178. Online Document 178

    Co-adsorbed fullerene systems and the formation of heterojunction layers at a nanometer scale

    C. Cepek, A. Goldoni

  179. Online Document 179

    Introduction to surfaces at metal-electrolyte interfaces

    M. Nowicki, K. Wandelt

  180. Online Document 180

    Anion interaction with copper surfaces: general properties of metal surfaces

    M. Nowicki, K. Wandelt

  181. Online Document 181

    Hydrohalic acid interaction with copper surfaces: adsorption of halide anions

    M. Nowicki, K. Wandelt

  182. Online Document 182

    Hydrohalic acid interaction with copper surfaces: Cu(100) – chloride and bromide

    M. Nowicki, K. Wandelt

  183. Online Document 183

    Hydrohalic acid interaction with copper surfaces: Cu(100) – iodide

    M. Nowicki, K. Wandelt

  184. Online Document 184

    Hydrohalic acid interaction with copper surfaces: XRD of chloride, bromide, and iodide on Cu(100)

    M. Nowicki, K. Wandelt

  185. Online Document 185

    Hydrohalic acid interaction with copper surfaces: Cu(111) – chloride

    M. Nowicki, K. Wandelt

  186. Online Document 186

    Hydrohalic acid interaction with copper surfaces: Cu(111) – bromide

    M. Nowicki, K. Wandelt

  187. Online Document 187

    Hydrohalic acid interaction with copper surfaces: Cu(111) – iodide

    M. Nowicki, K. Wandelt

  188. Online Document 188

    Hydrohalic acid interaction with copper surfaces: Cu(110) – bromide

    M. Nowicki, K. Wandelt

  189. Online Document 189

    Hydrohalic acid interaction with copper surfaces: Cu(110) – chloride

    M. Nowicki, K. Wandelt

  190. Online Document 190

    Hydrohalic acids interaction with copper surfaces: CuI compound formation

    M. Nowicki, K. Wandelt

  191. Online Document 191

    Hydrohalic acids interaction with copper surfaces: XPS of Cu(111) – iodide interaction

    M. Nowicki, K. Wandelt

  192. Online Document 192

    Copper surfaces in perchloric acid

    M. Nowicki, K. Wandelt

  193. Online Document 193

    Copper surfaces in sulfuric acid: sulfate adsorption on Cu(100) and Cu(111)

    M. Nowicki, K. Wandelt

  194. Online Document 194

    Copper surfaces in sulfuric acid: sulfate structure on Cu(111)

    M. Nowicki, K. Wandelt

  195. Online Document 195

    Copper surfaces in sulfuric acid: sulfate adsorption configuration

    M. Nowicki, K. Wandelt

  196. Online Document 196

    Copper surfaces in sulfuric acid: sulfate-induced surface morphology

    M. Nowicki, K. Wandelt

  197. Online Document 197

    Copper surfaces in sulfuric acid: sulfate adsorption/desorption kinetics

    M. Nowicki, K. Wandelt

  198. Online Document 198

    Hydrohalic acid anion interaction with silver surfaces: Ag(100) – chloride

    M. Nowicki, K. Wandelt

  199. Online Document 199

    Hydrohalic acid anion interaction with silver surfaces: Ag(100) – bromide

    M. Nowicki, K. Wandelt

  200. Online Document 200

    Hydrohalic acid anion interaction with silver surfaces: Ag(100) – iodide

    M. Nowicki, K. Wandelt

  201. Online Document 201

    Hydrohalic acid anion interaction with silver surfaces: Ag(111) – chloride

    M. Nowicki, K. Wandelt

  202. Online Document 202

    Hydrohalic acid anion interaction with silver surfaces: Ag(111) – bromide

    M. Nowicki, K. Wandelt

  203. Online Document 203

    Hydrohalic acid anion interaction with silver surfaces: Ag(111) – iodide

    M. Nowicki, K. Wandelt

  204. Online Document 204

    Hydrohalic acid anion interaction with silver surfaces: Ag(110) – chloride, bromide, and iodide

    M. Nowicki, K. Wandelt

  205. Online Document 205

    Silver surfaces in perchloric acid: Ag(110) – perchlorate

    M. Nowicki, K. Wandelt

  206. Online Document 206

    Silver surfaces in sulfuric acid: Ag(100) – sulfate

    M. Nowicki, K. Wandelt

  207. Online Document 207

    Silver surfaces in sulfuric acid: Ag(111) – sulfate

    M. Nowicki, K. Wandelt

  208. Online Document 208

    Silver surfaces in sulfuric acid: Ag(110) – sulfate

    M. Nowicki, K. Wandelt

  209. Online Document 209

    Hydrohalic-acid anion interaction with gold surfaces: Au(100) – chloride

    M. Nowicki, K. Wandelt

  210. Online Document 210

    Hydrohalic-acid anion interaction with gold surfaces: Au(100) – bromide

    M. Nowicki, K. Wandelt

  211. Online Document 211

    Hydrohalic-acid anion interaction with gold surfaces: Au(100) – iodide

    M. Nowicki, K. Wandelt

  212. Online Document 212

    Hydrohalic-acid anion interaction with gold surfaces: Au(111) – chloride

    M. Nowicki, K. Wandelt

  213. Online Document 213

    Hydrohalic-acid anion interaction with gold surfaces: Au(111) – bromide

    M. Nowicki, K. Wandelt

  214. Online Document 214

    Hydrohalic acid anion interaction with gold surfaces: Au(111) – iodide

    M. Nowicki, K. Wandelt

  215. Online Document 215

    Hydrohalic acid anion interaction with gold surfaces: Au(110) – bromide

    M. Nowicki, K. Wandelt

  216. Online Document 216

    Hydrohalic acid anion interaction with gold surfaces: Au(110) – iodide

    M. Nowicki, K. Wandelt

  217. Online Document 217

    Gold surfaces in perchloric acid: Au(100) – perchlorate

    M. Nowicki, K. Wandelt

  218. Online Document 218

    Gold surfaces in perchloric acid: Au(111) – perchlorate

    M. Nowicki, K. Wandelt

  219. Online Document 219

    Gold surfaces in perchloric acid: Au(110) – perchlorate

    M. Nowicki, K. Wandelt

  220. Online Document 220

    Gold surfaces in sulfuric acid: Au(100) – sulfate

    M. Nowicki, K. Wandelt

  221. Online Document 221

    Gold surfaces in sulfuric acid: Au(111) – sulfate

    M. Nowicki, K. Wandelt

  222. Online Document 222

    Gold surfaces in sulfuric acid: Au(110) – sulfate

    M. Nowicki, K. Wandelt

  223. Online Document 223

    Hydrohalic-acid anion interaction with platinum surfaces: Pt(100) – bromide

    M. Nowicki, K. Wandelt

  224. Online Document 224

    Hydrohalic acid anion interaction with platinum surfaces: Pt(100) – iodide

    M. Nowicki, K. Wandelt

  225. Online Document 225

    Hydrohalic acid anion interaction with platinum surfaces: Pt(111) – chloride

    M. Nowicki, K. Wandelt

  226. Online Document 226

    Hydrohalic acid anion interaction with platinum surfaces: Pt(111) – bromide

    M. Nowicki, K. Wandelt

  227. Online Document 227

    Hydrohalic acid anion interaction with platinum surfaces: Pt(111) – iodide

    M. Nowicki, K. Wandelt

  228. Online Document 228

    Hydrohalic acid anion interaction with platinum surfaces: Pt(110) – bromide

    M. Nowicki, K. Wandelt

  229. Online Document 229

    Hydrohalic acid anion interaction with platinum surfaces: Pt(110) – iodide

    M. Nowicki, K. Wandelt

  230. Online Document 230

    Platinum surfaces in perchloric acid: Pt(111), Pt(100), Pt(110) – perchlorate

    M. Nowicki, K. Wandelt

  231. Online Document 231

    Platinum surfaces in sulfuric acid: general remarks

    M. Nowicki, K. Wandelt

  232. Online Document 232

    Platinum surfaces in sulfuric acid: Pt(100) – sulfate

    M. Nowicki, K. Wandelt

  233. Online Document 233

    Platinum surfaces in sulfuric acid: Pt(111) – sulfate

    M. Nowicki, K. Wandelt