Regenerated Cellulose Fibers from Direct Dissolution of Biomass

Abstract

Conventional approach of producing regenerated cellulose through ionic liquids is based on using pulp (>90 % cellulose) obtained from various sources. Recently, attempts have been made to directly use the biomass containing cellulose, hemicellulose, and lignin and produce composite fibers. Such an approach would avoid the need to produce pulp and substantially reduce the cost of the fiber and the use of chemicals. Biomass from oak, bagasse, and pine was used with and without pretreatment to produce fibers using 1-ethyl-3-methylimidazolium acetate as the solvent. Type and composition of biomass, conditions used for pretreatment, and dissolution and composition and properties of the fibers obtained and compared in Table 20.1. Fiber production conditions varied depending on the type of pulp, and it was found that fibers containing higher amounts of cellulose had higher strength and elongation [11Sun]. Also, pretreatment resulted in higher cellulose content and therefore better properties. Bagasse could be dissolved and made into fibers using low- or high-temperature dissolution, whereas wood cellulose required the use of high temperatures but shorter time. The ability to directly dissolve lignocellulosic sources and produce fibers could lead to novel fibers and also significant cost reductions. However, the viability of commercial-scale production of this process and the properties of the fibers that can be obtained is not known. In addition, the presence of lignin and hemicellulose could affect further processing (dyeing, etc.) of the fibers, and the properties of the fibers could be adversely affected.

Cite this page

References (2)

About this content

Title
Regenerated Cellulose Fibers from Direct Dissolution of Biomass
Book Title
Innovative Biofibers from Renewable Resources
In
Regenerated Cellulose Fibers
Book DOI
10.1007/978-3-662-45136-6
Chapter DOI
10.1007/978-3-662-45136-6_20
Part of
Volume
Editors
Authors
  • Narendra Reddy (3)
  • Yiqi Yang (4)
  • Author Affiliation
  • 3 Centre for Emerging Technologies, Jain University, Bangalore, India
  • 4 Department of Textiles, Merchandising and Fashion Design, University of Nebraska-Lincoln, Lincoln, NE, USA
  • Cite this content

    Citation copied