Recent Progress in Self-Lubricating Ceramic Composites

Abstract

Structural ceramic composites have received increasing attention over the past few decades for their potential applications in various fields. Lubrication is usually required for moving ceramic parts because of their high coefficient of friction under dry sliding conditions. Self-lubricating ceramic composites have been applied in severe operating conditions where conventional lubrication method, such as liquid lubrication, is unavailable. The solid lubricants added in self-lubricating ceramic composites can reduce the coefficient of friction. However, they decrease mechanical properties and then weaken antiwear property of the ceramic composites, which consequently restricts self-lubricating ceramic composites’ application scope. Therefore, there is a contradiction between the antifriction and antiwear properties of self-lubricating ceramic composites and many efforts from researchers have been devoted to resolve it. In this chapter, two new types of self-lubricating ceramic composites were elaborated. Graded self-lubricating ceramic composites were developed by adopting the design concept of functionally graded materials (FGMs). Their characteristics are that the solid lubricant content decreases with a gradient from the surface to the center and thermal residual compressive stresses exist in the surface after the sintering process. The gradient distribution of solid lubricant and the thermal residual compressive stresses are used to improve the mechanical properties of the ceramic composites. Another new type of self-lubricating ceramic composites is those with the addition of coated solid lubricants. The solid lubricant powders are firstly coated by metal or metallic oxide, etc., to form core-shell structured composite powders and then mixed with the ceramic matrix powders to prepare self-lubricating ceramic composites by sintering. The shell substance is used to protect the solid lubricant core from reacting with the ceramic matrix during the sintering process and promote the relative density of the ceramic composites. The two new types of self-lubricating ceramic composites showed superior mechanical properties and tribological properties to the traditional self-lubricating ceramic composites.

Cite this page

References (26)

About this content

Title
Recent Progress in Self-Lubricating Ceramic Composites
Book Title
Self-Lubricating Composites
Book DOI
10.1007/978-3-662-56528-5
Chapter DOI
10.1007/978-3-662-56528-5_5
Part of
Volume
Editors
  • Pradeep L. Menezes Send Email (1)
  • Pradeep K. Rohatgi Send Email (2)
  • Emad Omrani Send Email (3)
  • Editor Affiliation
  • 1 Department of Mechanical Engineering, University of Nevada Reno, Reno, Nevada, USA
  • 2 Department of Materials Science and Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
  • 3 Department of Materials Science and Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
  • Authors
  • Guangyong Wu Send Email (4)
  • Chonghai Xu Send Email (4) (5) (6)
  • Guangchun Xiao (5) (6)
  • Mingdong Yi (5) (6)
  • Author Affiliation
  • 4 School of Mechanical Engineering, Shandong University, Jinan, China
  • 5 School of Mechanical and Automotive Engineering, Qilu University of Technology, Jinan, China
  • 6 Key Laboratory of Advanced Manufacturing and Measurement and Control Technology for Light Industry in Universities of Shandong, Qilu University of Technology, Jinan, China
  • Cite this content

    Citation copied